Real-time Prediction of Adverse Outcomes After Surgery

实时预测手术后不良后果

基本信息

  • 批准号:
    10724048
  • 负责人:
  • 金额:
    $ 18.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

The goal of this K23 application is to provide Dr. Bishara with the necessary research experience and time to establish himself as a primary investigator focused on designing and implementing machine learning (ML) and artificial intelligence in the perioperative setting. The career development activities in this application include early intensive course work in ML and statistics focused on improving model development and causal inference techniques. Then coursework focuses on clinical trial training, grantsmanship, responsible conduct of research, and culminates in a course studying implementation science and algorithmic human-robot interaction. Augmenting this training are project-specific tutorials with experts to improve the models proposed in this application with a focus on real-time prediction of perioperative acute kidney injury (AKI) and describing the risk landscape of perioperative AKI. To achieve these goals, Dr. Bishara has assembled a team of experts and mentors in the areas of data science, AKI, ML, and statistics. Dr. Atul Butte, his primary mentor, is an expert in data science and ML and has trained nearly 100 post-doctoral fellows, undergraduate and graduate students, and staff. Dr. Kathleen Liu is a thought leader in the field of AKI with an active research program focused on AKI and critical care clinical trials. She has mentored numerous junior faculty, including previous NIH K23 awardees. Dr. Romain Pirracchio is an expert in biostatistics and ML in acute care. He has collaborations with Berkeley and the FDA and over 100 publications in the realm. These three mentors and the impressive team of advisors will guide Dr. Bishara to complete the project described below and to grow into an independent investigator. There has been a recent surge in the published literature on ML in medicine, and studies have shown patient care improves when provider expertise is augmented by ML. Unfortunately, implementing published ML models to inform clinical care is not trivial, as many obstacles exist. This application focuses on exploring and overcoming those obstacles by implementing specific models in the perioperative setting. Dr. Bishara has developed novel ML visualization technology that allows for improved interactions between providers and models, which provide predictions and recommendations to those providers. This technology also allows for improved regular monitoring and interpretation of the model to assure sustained accuracy and reliability. He will apply this new technology to predict perioperative AKI in real-time, building upon models he has developed. Postoperative AKI is a major public health problem affecting up to 47% of patients and is consistently associated with adverse outcomes, including, major adverse cardiovascular events (MACE), increased healthcare costs, and death. Randomized controlled trials show that implementation of kidney-protective strategies prevents AKI for high-risk patients. Evidence suggests these strategies are underutilized as risk of AKI is often underestimated in the perioperative setting. Dr. Bishara hypothesizes his ML models will identify those patients who will most benefit from timely kidney protective interventions at the time when preventative strategies can be initiated.
K23申请的目的是为Bishara博士提供必要的研究经验, 是时候让自己成为一名专注于设计和实施机器学习的主要研究者了 (ML)和人工智能在围手术期的应用此应用程序中的职业发展活动 包括ML和统计学早期密集课程工作,重点是改进模型开发和因果关系 推理技术然后,课程重点是临床试验培训,保证,负责任的行为, 研究,并在学习实现科学和算法人机交互的课程中达到高潮。 增强此培训的是特定于项目的教程,专家将改进本 应用,重点是实时预测围手术期急性肾损伤(阿基)并描述风险 围手术期阿基的概况。为了实现这些目标,Bishara博士组建了一个专家团队, 数据科学、阿基、ML和统计学领域的导师。阿图尔·布特博士,他的主要导师,是一位专家, 数据科学和机器学习,并培养了近100名博士后研究员,本科生和研究生, 和工作人员。Kathleen Liu博士是阿基领域的思想领袖,专注于阿基的积极研究计划 和重症监护临床试验。她指导了许多初级教师,包括以前的NIH K23获奖者。 博士Romain Pirracchio是急性护理中的生物统计学和ML专家。他与伯克利合作, FDA和超过100种出版物。这三位导师和令人印象深刻的顾问团队将 指导Bishara博士完成下面描述的项目,并成长为一名独立的研究者。 最近关于医学ML的出版文献激增,研究表明, 当提供者的专业知识通过ML得到增强时,患者护理得到改善。不幸的是,实现已发布的ML 为临床护理提供信息的模型并不是微不足道的,因为存在许多障碍。该应用程序侧重于探索和 通过在围手术期环境中实施特定模式来克服这些障碍。比沙拉医生 开发了一种新的ML可视化技术,可以改善供应商之间的交互, 模型,为这些供应商提供预测和建议。这项技术还允许 改进对模型的定期监测和解释,以确保持续的准确性和可靠性。他将 应用这项新技术,以他开发的模型为基础,实时预测围手术阿基。 术后阿基是影响高达47%患者的主要公共卫生问题, 不良结局,包括主要心血管不良事件(MACE)、医疗费用增加, 与死随机对照试验表明,实施肾脏保护策略可预防阿基 高危患者的治疗有证据表明,这些策略未得到充分利用,因为阿基的风险往往被低估 在围手术期环境中。Bishara博士假设他的ML模型将识别出那些最愿意 在可以启动预防策略时,从及时的肾脏保护干预中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Bishara其他文献

Andrew Bishara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.83万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 18.83万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 18.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了