CAREER: Multiscale Modeling of Polymersomes
职业:聚合物囊泡的多尺度建模
基本信息
- 批准号:1750694
- 负责人:
- 金额:$ 46.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education on how chain-like molecular units, or polymers, can assemble themselves to form vesicles that confine a solution. The vesicles, called polymersomes, have diverse applications in the soft materials community as drug delivery devices or even as tiny, nanoscale, flasks for chemical reactions. The shape of the polymersome can be tailored in response to external stimuli such as temperature or type of solvent. The PI will focus on polymersomes made of a particular kind of polymer that contains a hydrophilic molecular building block, one that can dissolve or mix with water, that is connected to a hydrophobic molecular building block which does not mix well with water. At low concentrations in water, depending on the polymer length and exact ratio of hydrophobic to hydrophilic groups, these polymers can assemble into spherical shapes, worm-like shapes, or vesicle-like shapes. The PI will use computation and focus investigation on the self-assembly of these polymers into polymersomes. This award will use molecular dynamics simulation methods to investigate both the self-assembly of these polymersomes as well as their elastic properties. In molecular dynamics, the rule by which atoms and molecules interact with each other is mathematically described by a force field. This award will create new force fields to simulate polymersomes at large length-scales on the order of microns and long time-scales on the order of hundreds of microseconds. The PI will aim to develop these force fields so that they accurately describe the elastic properties of the polymersomes. In addition, these force fields will be used to investigate how adding change to the polymers changes the properties of the polymersome membrane. Furthermore, the PI will utilize specialized techniques in molecular dynamics simulation to investigate the formation of pores in the membrane, as well as change the membrane shape.Complementing the above research activities, proposed educational and outreach activities include strengthening the local educational and research environment of College of Staten Island and City University of New York (CUNY), and more closely integrating the institutions with local NY teachers. Working with a local high school teacher who is an alumna of College of Staten Island, the PI has developed several course modules that introduce students to concepts in chemistry. The PI will test and assess the impact of these modules. Moreover, the PI will establish a two- day workshop to introduce local high school teachers to computational chemistry and high-performance computing, in collaboration with the High-Performance Computing Center at CUNY, entitled Workshop for Teaching Science with Computational Chemistry. The PI will assess the impact of this workshop through surveys of the teachers after and during the next school year to see how this impacts and enhances the classroom environment, with the guidance of the Director for Academic Assessment at CSI. The proposed research and the educational activities are all enhanced by the PI's experience and current activity in mentoring minorities and females interested in the STEM fields all the way from the high school to postdoctoral level. TECHNICAL SUMMARYThis CAREER award supports theoretical and computational research and education to develop and utilize multi-scale computational methods with the aim of deducing design principles to control the properties of polymersomes. Nearly all soft materials, particularly materials based on polymeric self-assembly, are far from their equilibrium state. Not only is this a challenge, but it is also an opportunity to harness the structure, morphology, and transformation kinetics of self-assemblies to optimize materials properties. Indeed, the ability to tune molecular assembly shape in response to external stimuli has numerous applications in tailoring the thermodynamic, mechanical, and photonic properties of materials. This research activity aims to develop multi-scale computational approaches that will provide fundamental insight into the design principles guiding the elastic properties of charged polymeric membranes, including polymersomes. Polymersomes, in particular, stimuli-responsive polymersomes have diverse applications as nanocarriers, nanoreactors, and even as biomimectic systems. Within the scope of this project the PI will develop a computational toolbox that can be used to engineer polymersomes with key physical properties. Specifically, the PI will design coarse grain force fields for common diblock copolymers that self-assemble into polymersomes, and use an array of approaches in molecular dynamics to characterize and predict their elastic properties. Next, the PI will utilize various computational methodologies to predict the stability of these polymersomes, specifically the energy required to porate the membrane, as well as characterize their stimuli-responsive change in shape.A focus of this research project is the development of computational methods and force fields to characterize intermediate morphologies and shape transformations underlying molecular self-assembly of amphiphilic molecules. These new computational techniques would be both verified and experimentally validated, and would allow for the rational design of new diblock copolymer mixtures that can self-assemble into the polymersome morphology, that can be tested by experimental collaborators. New computational methods that inform the design of diverse morphological self-assemblies from the molecular level up, that also incorporate their potential for dynamic shape transformation, can impact multiple soft materials fields. Outcomes of the proposed research will allow for molecular design strategies that can be used to tailor amphiphiles to optimize their dynamic response to external stimuli such as solvent or salt concentration. For example, the diblock copolymers discussed within this proposal can be tailored for applications such as drug delivery or as catalytically active nanomotors. Complementing the above research activities, proposed educational and outreach activities include strengthening the local educational and research environment of College of Staten Island and City University of New York (CUNY), and more closely integrating the institutions with local NY teachers. Working with a local high school teacher who is an alumna of College of Staten Island, the PI has developed several course modules that introduce students to concepts in chemistry such as surfactant micellization. The PI will test and assess the impact of these modules. Moreover, the PI will establish a two-day workshop to introduce local high school teachers to computational chemistry and high-performance computing, in collaboration with the High-Performance Computing Center at CUNY, entitled Workshop for Teaching Science with Computational Chemistry. The PI will assess the impact of this workshop through surveys of the teachers after and during the next school year to see how this impacts and enhances the classroom environment, with the guidance of the Director for Academic Assessment at CSI. The proposed research and the educational activities are all enhanced by the PI's past experience and current activity in mentoring minorities and females interested in the STEM fields all the way from the high school to postdoctoral level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该职业奖支持关于链状分子单元或聚合物如何自我组装形成限制溶液的囊泡的理论和计算研究和教育。 这些被称为聚合物囊泡的囊泡在软材料领域有着多种应用,可以作为药物输送装置,甚至可以作为用于化学反应的微型纳米级烧瓶。 聚合物囊泡的形状可以根据外部刺激(例如温度或溶剂类型)进行定制。 PI将重点研究由一种特殊聚合物制成的聚合物囊泡,该聚合物含有亲水性分子构件,该亲水性分子构件可以溶解或与水混合,该聚合物与与水不能很好混合的疏水性分子构件相连。 在水中的低浓度下,根据聚合物的长度和疏水性与亲水性基团的精确比例,这些聚合物可以组装成球形、蠕虫状或囊泡状。 PI 将使用计算并重点研究这些聚合物自组装成聚合物囊泡的过程。 该奖项将使用分子动力学模拟方法来研究这些聚合物囊泡的自组装及其弹性特性。 在分子动力学中,原子和分子相互作用的规则由力场在数学上描述。 该奖项将创建新的力场来模拟微米量级的大长度尺度和数百微秒量级的长时间尺度的聚合物囊泡。 PI 将致力于开发这些力场,以便它们准确地描述聚合物囊泡的弹性特性。 此外,这些力场将用于研究向聚合物添加变化如何改变聚合物囊泡膜的性质。 此外,PI将利用分子动力学模拟的专业技术来研究膜中孔隙的形成,以及改变膜的形状。作为上述研究活动的补充,拟议的教育和外展活动包括加强史泰登岛学院和纽约市立大学(CUNY)当地的教育和研究环境,以及将机构与纽约当地教师更紧密地结合起来。 PI 与一位史泰登岛学院校友的当地高中教师合作,开发了多个课程模块,向学生介绍化学概念。 PI 将测试和评估这些模块的影响。 此外,PI 将与纽约市立大学高性能计算中心合作,举办一个为期两天的研讨会,向当地高中教师介绍计算化学和高性能计算,题为“计算化学教学科学研讨会”。 PI 将在 CSI 学术评估总监的指导下,通过在下一学年之后和期间对教师进行调查来评估本次研讨会的影响,以了解这如何影响和改善课堂环境。 PI 的经验和当前在指导对 STEM 领域感兴趣的少数族裔和女性(从高中到博士后水平)方面的经验和当前活动都增强了拟议的研究和教育活动。 技术摘要该职业奖支持理论和计算研究及教育,以开发和利用多尺度计算方法,旨在推导控制聚合物囊泡性能的设计原理。 几乎所有软材料,特别是基于聚合物自组装的材料,都远离其平衡状态。 这不仅是一个挑战,也是一个利用自组装的结构、形态和转化动力学来优化材料性能的机会。事实上,响应外部刺激而调整分子组装形状的能力在调整材料的热力学、机械和光子特性方面具有广泛的应用。 这项研究活动旨在开发多尺度计算方法,为指导带电聚合物膜(包括聚合物囊泡)的弹性特性的设计原理提供基础见解。 聚合物囊泡,特别是刺激响应聚合物囊泡,具有作为纳米载体、纳米反应器甚至仿生系统的多种应用。 在该项目范围内,PI 将开发一个计算工具箱,可用于设计具有关键物理特性的聚合物囊泡。具体来说,PI 将为自组装成聚合物囊泡的常见二嵌段共聚物设计粗粒力场,并使用一系列分子动力学方法来表征和预测其弹性特性。 接下来,PI将利用各种计算方法来预测这些聚合物囊泡的稳定性,特别是在膜上打孔所需的能量,以及表征它们的刺激响应形状变化。该研究项目的重点是开发计算方法和力场,以表征两亲分子分子自组装的中间形态和形状转变。 这些新的计算技术将经过验证和实验验证,并将允许合理设计新的二嵌段共聚物混合物,这些混合物可以自组装成聚合物囊泡形态,可以由实验合作者进行测试。 新的计算方法可以从分子水平上为不同形态自组装的设计提供信息,同时也结合了它们动态形状转变的潜力,可以影响多个软材料领域。 拟议研究的结果将允许分子设计策略,可用于定制两亲物,以优化其对溶剂或盐浓度等外部刺激的动态响应。 例如,本提案中讨论的二嵌段共聚物可以针对药物输送或催化活性纳米马达等应用进行定制。作为上述研究活动的补充,拟议的教育和外展活动包括加强史坦顿岛学院和纽约市立大学 (CUNY) 当地的教育和研究环境,以及将机构与纽约当地教师更紧密地结合起来。 PI 与当地一位史泰登岛学院校友的高中教师合作,开发了多个课程模块,向学生介绍表面活性剂胶束化等化学概念。 PI 将测试和评估这些模块的影响。 此外,PI还将与纽约市立大学高性能计算中心合作,举办一个为期两天的研讨会,向当地高中教师介绍计算化学和高性能计算,题为“计算化学教学科学研讨会”。 PI 将在 CSI 学术评估总监的指导下,通过在下一学年之后和期间对教师进行调查来评估本次研讨会的影响,以了解这如何影响和改善课堂环境。 PI 过去的经验和当前在指导对 STEM 领域感兴趣的少数族裔和女性(从高中到博士后水平)方面的活动都增强了拟议的研究和教育活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular Dynamics Simulations of Polyelectrolyte Complexes
- DOI:10.1021/acs.biomac.3c01032
- 发表时间:2024-02-17
- 期刊:
- 影响因子:6.2
- 作者:Rajpersaud,Tania;Tabandeh,Sara;Loverde,Sharon M.
- 通讯作者:Loverde,Sharon M.
Molecular simulation of the shape deformation of a polymersome
- DOI:10.1039/c9sm02165e
- 发表时间:2020-04-07
- 期刊:
- 影响因子:3.4
- 作者:Chakraborty, Kaushik;Shinoda, Wataru;Loverde, Sharon M.
- 通讯作者:Loverde, Sharon M.
Molecular dynamics simulations of the interaction of phospholipid bilayers with polycaprolactone
- DOI:10.1080/08927022.2019.1606425
- 发表时间:2019-07-24
- 期刊:
- 影响因子:2.1
- 作者:Drenscko, Mihaela;Loverde, Sharon M.
- 通讯作者:Loverde, Sharon M.
Domain Formation in Charged Polymer Vesicles
- DOI:10.1021/acs.macromol.1c00762
- 发表时间:2021-10-13
- 期刊:
- 影响因子:5.5
- 作者:Chakraborty, Kaushik;Khatua, Prabir;Loverde, Sharon M.
- 通讯作者:Loverde, Sharon M.
Exploration of the Nucleation Pathway for Supramolecular Fibers
- DOI:10.1021/acs.jcim.3c00049
- 发表时间:2023-04-05
- 期刊:
- 影响因子:5.6
- 作者:Tang,Phu K.;Khatua,Prabir;Loverde,Sharon M.
- 通讯作者:Loverde,Sharon M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharon Loverde其他文献
Sharon Loverde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Standard Grant
CAREER: Multiscale Modeling of Thrombus Formation and its Response to External Loads
职业:血栓形成的多尺度建模及其对外部负载的响应
- 批准号:
2340696 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Standard Grant
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
- 批准号:
2339054 - 财政年份:2024
- 资助金额:
$ 46.25万 - 项目类别:
Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 46.25万 - 项目类别:
Standard Grant
CAREER: Revealing the interaction mechanisms of PICK1 using multiscale modeling
职业:使用多尺度建模揭示 PICK1 的相互作用机制
- 批准号:
2237369 - 财政年份:2023
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant
CAREER: Cryo-electron tomography derived multiscale integrative modeling of subcellular organization
职业:冷冻电子断层扫描衍生的亚细胞组织多尺度综合模型
- 批准号:
2238093 - 财政年份:2023
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant
CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development
职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来
- 批准号:
2240155 - 财政年份:2023
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant
CAREER: A Unified Multiscale Modeling Approach for Processes in the Atmospheric Boundary Layer
职业:大气边界层过程的统一多尺度建模方法
- 批准号:
2236504 - 财政年份:2023
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant
CAREER: A scalable multiscale modeling framework to explore soot formation in reacting flows
职业:一个可扩展的多尺度建模框架,用于探索反应流中烟灰的形成
- 批准号:
2144290 - 财政年份:2022
- 资助金额:
$ 46.25万 - 项目类别:
Continuing Grant














{{item.name}}会员




