CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment

职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施

基本信息

  • 批准号:
    2340882
  • 负责人:
  • 金额:
    $ 54.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

A crop's traits and 3D structure (the shape and architecture of plants, including both above- and below-ground parts) are the attributes that chiefly influence crop growth and yield and provide critical evidence for plant phenotyping (the characterization assessment of plant traits). Crop yield predictions can be made by assessing 3D plant structures using crop sensing methods. However, crop sensing results at different scales are usually analyzed in isolation, which overlooks essential connections. Moreover, while root systems play a central role in plant functions, current methods mainly assess crops based on above-ground crop structure due to the difficulty of accessing roots. Current methods use satellites for remote sensing and drones for local sensing, enabling crop assessment at varying scales; however, it is difficult to integrate these observations effectively, and the information stream is formidable. The overarching objective of this project is to develop a novel AI infrastructure to integrate these observations to model and assess 3D crop structures at multiple scales and enhance below-ground sensing capabilities. Using this infrastructure, 3D crop structures can be estimated accurately at the individual, farm, and satellite scales, facilitating crop assessment and yield prediction. The project dramatically enhances and accelerates the ability of growers and agronomists to assess critical crop field structural variation for both above- and below-ground components, enabling large-scale crop management. This project also benefits students, from the high school to the Ph.D. level, by applying multi-scale 3D models of above- and below-ground crop structures to immersive education methods (Virtual Reality (VR), Augmented Reality (AR), and online learning), which are well-suited to solving the challenges of distance learning, especially for subjects like agriculture requiring field study. The multi-scale sensing system is also capable of estimating 3D landscape structures and large-scale crop structures and can be utilized in other areas, such as Arctic Sea ice modeling, forestry, and climate change studies.This project aims to connect a plant’s structural phenotypes below- and above- ground and link in-situ measurements to satellite sensing data, thus enabling non-destructive crop root sensing and root-system status estimation based on observation of plant growth above-ground while at the same time empowering satellite images to assess these factors to furnish more local and detailed information. This project establishes a method for 3D crop sensing of individual plants, crop fields, and satellite regions to provide multi-scale crop structural evidence for crop assessment and yield prediction. This project also develops a novel AI neural network to sense root structures and predict traits based on sensing above-ground plant structures. This project investigates methods for satellite-based 3D sensing and nondestructive below-ground root sensing. Novel AI infrastructures are explored to address critical issues in computer vision and remote sensing, efficient integration of multi-scale sensing, 3D structure prediction, and spatial-temporal 4D inference. Such an approach can lower the ceiling for operational adoption of satellite and in-situ imagery assessments, based on a scientifically underpinned, multi-scale, 3D assessment workflow. In addition to its essential and practical implications for agriculture professionals, this project also explores novel AI solutions within computer vision and remote sensing. Crop structures are highly diverse, complicated, and changing phenomena. Therefore, agriculture presents an ideal research domain for investigating novel AI methods. This research advances AI by 1) largely improving the fusion effectiveness of various remote sensing modalities from sensors mounted on different devices, 2) significantly enhancing the learning capability by connecting sensing outputs expressed in multiple scales, 3) enabling 3D structure prediction for objects across different domains, and 4) providing future status prediction based on 4D spatial-temporal neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作物的性状和三维结构(植物的形状和结构,包括地上和地下部分)是主要影响作物生长和产量的属性,并为植物表型(植物性状的表征评估)提供关键证据。可以通过使用作物感测方法评估3D植物结构来进行作物产量预测。然而,不同尺度下的作物传感结果通常被孤立地分析,忽略了重要的联系。此外,虽然根系在植物功能中起着核心作用,但由于难以接近根系,目前的方法主要基于地上作物结构来评估作物。目前的方法使用卫星进行遥感,使用无人驾驶飞机进行当地遥感,从而能够在不同的尺度上进行作物评估;然而,很难有效地整合这些观测结果,而且信息流非常强大。该项目的总体目标是开发一种新型的人工智能基础设施,以整合这些观测结果,在多个尺度上对3D作物结构进行建模和评估,并增强地下传感能力。使用该基础设施,可以在个人、农场和卫星尺度上准确估计3D作物结构,从而促进作物评估和产量预测。该项目极大地提高和加快了种植者和农学家评估地上和地下部分关键作物田间结构变化的能力,从而实现大规模作物管理。这个项目也使学生受益,从高中到博士。通过将地上和地下作物结构的多尺度3D模型应用于沉浸式教育方法(虚拟现实(VR),增强现实(AR)和在线学习),这非常适合解决远程学习的挑战,特别是对于需要实地研究的农业等科目。多尺度传感系统还能够估计3D景观结构和大尺度作物结构,并可用于其他领域,如北极海冰建模,林业和气候变化研究。该项目旨在将植物的地下和地上结构表型联系起来,并将现场测量与卫星传感数据联系起来,从而能够根据对地上植物生长的观察进行非破坏性的作物根系感测和根系状况估计,同时使卫星图像能够评估这些因素,以提供更多的本地和详细信息。该项目建立了一种用于个体植物、农田和卫星区域的3D作物感测方法,为作物评估和产量预测提供多尺度作物结构证据。该项目还开发了一种新型的人工智能神经网络,以感知根系结构并基于感知地上植物结构来预测性状。本项目研究基于卫星的三维传感和无损地下根系传感方法。探索新的人工智能基础设施,以解决计算机视觉和遥感,多尺度传感,3D结构预测和时空4D推理的有效集成中的关键问题。这种方法可以降低在有科学依据的多尺度三维评估工作流程基础上实际采用卫星和现场图像评估的上限。除了对农业专业人士的基本和实际影响外,该项目还探索了计算机视觉和遥感领域的新型人工智能解决方案。作物结构是高度多样、复杂和不断变化的现象。因此,农业是研究新型人工智能方法的理想研究领域。这项研究通过以下方式推进AI:1)大大提高了安装在不同设备上的传感器的各种遥感模式的融合效率,2)通过连接以多个尺度表示的传感输出来显着增强学习能力,3)实现对不同领域对象的3D结构预测,以及4)提供基于4D空间的未来状态预测-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值进行评估来支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoyu Lu其他文献

Regularization and attention feature distillation base on light CNN for Hyperspectral face recognition
  • DOI:
    https://doi.org/10.1007/s11042-021-10537-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Zhihua Xie;Jieyi Niu;Yi Li;Guoyu Lu
  • 通讯作者:
    Guoyu Lu
Bifunctional S-scheme CdSSe/Bisub2/subWOsub6/sub heterojunction catalysts exhibit generalized boosting performance in photocatalytic degradation of tetracycline hydrochloride, photoelectrochemical and electrocatalytic hydrogen production
双功能 S 型 CdSSe/双钨酸铋(Bisub2/subWOsub6/sub)异质结催化剂在盐酸四环素的光催化降解、光电化学和电催化制氢中表现出普遍的增强性能
  • DOI:
    10.1016/j.jallcom.2023.173306
  • 发表时间:
    2024-03-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Shuai Yang;Han Yang;Jun Zhang;Jiacen Lin;Guoyu Lu;Yujia Zhang;Junhua Xi;Zhe Kong;Lihui Song;Haijiao Xie
  • 通讯作者:
    Haijiao Xie
Object Detection Based on Raw Bayer Images
Bird-View 3D Reconstruction for Crops with Repeated Textures
RawSeg: Grid Spatial and Spectral Attended Semantic Segmentation Based on Raw Bayer Images
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoyu Lu
  • 通讯作者:
    Guoyu Lu

Guoyu Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guoyu Lu', 18)}}的其他基金

Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2334690
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2334246
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2104032
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2126643
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2105257
  • 财政年份:
    2021
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant

相似国自然基金

无人集群协同地下空间探索与建图
  • 批准号:
    JCZRYB202500481
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
低碳智能建筑与基础设施建设关键技术与装备研发-城市地下空间低碳智能建设关键技术与装备研发
  • 批准号:
    2025C02210
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
地下空间受限环境液压履带式装备行走精准测控机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于四足机器人的地下空间自主探索与 三维测图方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
地下管道空间全固废基流态固化渣土自密实填充关键技术与示范
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
地下水漏斗区农-水耦合关系定量评估与 空间优化研究一一基于作物种植结构演变视角
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    青年科学基金项目
基于数字孪生模型的复杂陆地环境地下空间探测与概率 反演
  • 批准号:
    2024JJ6499
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新体制毫米波雷达多机联合地下空间组网定位与形变监测
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
城市地下空间多机器人高鲁棒性协同容错控制与探测
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向地下受限空间的无人机同时探索与覆盖规划研究
  • 批准号:
    62303249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modular Basements: off-site modular construction for the underground space
模块化地下室:地下空间的异地模块化建造
  • 批准号:
    2883574
  • 财政年份:
    2023
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Studentship
DASI Track 2: Space Weather UnderGround (SWUG)
DASI 第 2 轨:地下空间天气 (SWUG)
  • 批准号:
    1933075
  • 财政年份:
    2020
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Standard Grant
Design & Development of Underground Thermal Energy Storage for Hot Water Space Heating Applications
设计
  • 批准号:
    549652-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Development of disaster prevention evaluation method for the landscape in the underground space including commercial facilities.
商业设施等地下空间景观防灾评价方法开发
  • 批准号:
    23560747
  • 财政年份:
    2011
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Sensor Network Deployment Method by Dropping and Throwing Sensor Node for Gathering Disaster Area Information in Underground Space
地下空间投掷传感器节点采集灾区信息的传感器网络部署方法的开发
  • 批准号:
    21500191
  • 财政年份:
    2009
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-faceted approach on elementary particles from accelerators, space, and underground
来自加速器、太空和地下的基本粒子的多方面方法
  • 批准号:
    20540257
  • 财政年份:
    2008
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inundation risk in highly urbanized area and the strategy of evacuation from an underground space
高度城市化地区的洪水风险及地下空间疏散策略
  • 批准号:
    19560517
  • 财政年份:
    2007
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Evacuation Simulator on High-definition Immersive Projection Display and Application to Inundation into Underground Space
高清沉浸式投影显示疏散模拟器的研制及其在地下空间淹没中的应用
  • 批准号:
    19860047
  • 财政年份:
    2007
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
HAZARAD ANALYSIS OF SMALL UNDERGROUND SPACE IN URBAN FLOOD AND STUDY OF COUNTERMEASURES
城市洪水中小型地下空间危害分析及对策研究
  • 批准号:
    18510146
  • 财政年份:
    2006
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Utilization of the Deep Underground Space in Tokyo
东京地下深处空间的利用
  • 批准号:
    17601011
  • 财政年份:
    2005
  • 资助金额:
    $ 54.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了