CAREER: Ultrasound-based Intent Modeling and Control Framework for Neurorehabilitation and Educating Children with Disabilities and High School Students
职业:基于超声的意图建模和控制框架,用于神经康复和教育残疾儿童和高中生
基本信息
- 批准号:1750748
- 负责人:
- 金额:$ 50.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Each year, more than 17,000 people in the United States experience a spinal cord injury. Individuals suffering from incomplete spinal cord injuries may have voluntary control of their limbs, but their strength is weakened compared to able-bodied persons. Neurorehabilitation is a therapeutic approach used to recover limb function in individuals suffering from incomplete spinal cord injury; robotic or electrical stimulation devices encourage repair of the person's nervous system through repeated, assisted exercise. The amount of assistance the device provides is based upon the user's remaining muscle function. However, correctly measuring a person's voluntary effort during therapeutic exercise is a significant technical challenge. Discrepancies in the measurement can cause the robot to provide too much or too little assistance, which can slow recovery and lead to falls during robot-assisted walking. To address the technical challenge of sensing of voluntary effort, this project will integrate ultrasound imaging with electromyography-based (i.e., electrical signals) measurement of ankle muscles that govern walking. The use of ultrasound imaging will allow direct visualization and measurement of muscle activity and minimizes interference of electrical signals from neighboring muscles. Ultrasound imaging will also be investigated as an approach for optimizing electrode placement to initiate multi-plane ankle movements. The study will test the hypothesis that ultrasound imaging-based measurement of voluntary effort is more accurate than electromyography-based prediction alone. Research and education are integrated through student-led construction of ultrasound imaging and electromyography-based human-machine interaction platforms for children with special needs. The human-machine interaction platforms may accelerate learning in children with special needs and offers research opportunities for high school-age students from underrepresented groups in STEM. The PI's long-term career goal is to build a full-scale, feedforward musculoskeletal model that predicts human intent by obtaining signals from wearable ultrasound sensors attached to different limb muscles. Toward this goal, the project will derive control strategies that use ultrasound imaging to predict weakened voluntary effort of a person with incomplete spinal cord injury and provide assistance as-needed during walking with a hybrid exoskeleton. The research objectives of the proposal are to: (1) formulate an ultrasound imaging-based observer to predict voluntary effort in ankle muscles and (2) use the prediction in an ankle control strategy. An optimal ultrasound imaging-derived surrogate signal to measure voluntary effort will be determined, and a functional mapping between the surrogate signals and voluntary effort will be formulated. The stability and convergence conditions for the observer and the ankle controller will be established. The new intent prediction and control framework will be directly compared to electromyography-based prediction and control methods. Functional electrical stimulation of the ankle muscles that produce multi-plane ankle movements will also be investigated. To target the intended ankle muscle, ultrasound imaging-based feedback will be evaluated to optimize current in the stimulation electrodes. The project facilitates a breakthrough rehabilitation therapy that uses non-invasive, wearable ultrasound sensors to collect, monitor, and control muscle activity of persons with incomplete spinal cord injury.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年,美国有超过17,000人经历脊髓损伤。患有不完全脊髓损伤的人可能会自愿控制他们的四肢,但与健全的人相比,他们的力量会减弱。神经康复是一种用于恢复患有不完全脊髓损伤的个体的肢体功能的治疗方法;机器人或电刺激设备通过重复的辅助锻炼来促进人的神经系统的修复。设备提供的辅助量基于用户的剩余肌肉功能。然而,正确测量一个人在治疗运动期间的自愿努力是一个重大的技术挑战。测量中的不一致性可能导致机器人提供过多或过少的辅助,这可能减慢恢复并导致机器人辅助行走期间的福尔斯。为了解决自愿努力感测的技术挑战,该项目将把超声成像与基于肌电图的(即,电信号)对支配行走的踝部肌肉的测量。超声成像的使用将允许直接可视化和测量肌肉活动,并最大限度地减少来自邻近肌肉的电信号的干扰。超声成像也将作为一种优化电极放置的方法进行研究,以启动多平面踝关节运动。这项研究将检验一个假设,即基于超声成像的自愿努力的测量比单独基于肌电图的预测更准确。研究和教育通过学生主导的超声成像和肌电图为基础的人机交互平台的建设与特殊需要的儿童相结合。人机交互平台可以加速有特殊需要的儿童的学习,并为STEM中代表性不足的高中生提供研究机会。PI的长期职业目标是建立一个全尺寸的前馈肌肉骨骼模型,通过从连接到不同肢体肌肉的可穿戴超声传感器获取信号来预测人类意图。为了实现这一目标,该项目将得出控制策略,使用超声成像来预测不完全脊髓损伤患者的自主努力减弱,并在使用混合外骨骼行走期间提供所需的帮助。该提案的研究目标是:(1)制定一个基于超声成像的观察者来预测踝关节肌肉的自愿努力和(2)在踝关节控制策略中使用预测。将确定用于测量自主努力的最佳超声成像导出的替代信号,并且将制定替代信号和自主努力之间的功能映射。将建立观测器和踝关节控制器的稳定性和收敛条件。新的意图预测和控制框架将直接与基于肌电图的预测和控制方法进行比较。功能性电刺激的踝关节肌肉,产生多平面踝关节运动也将进行研究。为了靶向预期踝关节肌肉,将评估基于超声成像的反馈,以优化刺激电极中的电流。该项目促进了一项突破性的康复治疗,使用非侵入性的,可穿戴的超声波传感器来收集,监测和控制不完全脊髓损伤患者的肌肉活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plantarflexion Moment Prediction during the Walking Stance Phase with an sEMG-Ultrasound Imaging-Driven Model
- DOI:10.1109/embc46164.2021.9630046
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Qiang Zhang;Natalie Fragnito;Alison Myers;Nitin Sharma
- 通讯作者:Qiang Zhang;Natalie Fragnito;Alison Myers;Nitin Sharma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin Sharma其他文献
Transmission of Hidden Cipher Text over a Binary Symmetric Channel
隐藏密文在二进制对称信道上的传输
- DOI:
10.5120/8501-2451 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Rana;Nitin Sharma;Parveen Malik - 通讯作者:
Parveen Malik
Gamma correction based satellite image enhancement using singular value decomposition and discrete wavelet transform
使用奇异值分解和离散小波变换进行基于伽玛校正的卫星图像增强
- DOI:
10.1109/icaccct.2014.7019306 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nitin Sharma;O. Verma - 通讯作者:
O. Verma
Phytochemical screening, antimicrobial, antioxidant and cytotoxic potential of different extracts of Psidium guajava leaves
番石榴叶不同提取物的植物化学筛选、抗菌、抗氧化和细胞毒性潜力
- DOI:
10.1007/s42535-020-00151-4 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Raj;Vikas Menon;Nitin Sharma - 通讯作者:
Nitin Sharma
An optimal remote sensing image enhancement with weak detail preservation in wavelet domain
小波域弱细节保留的最优遥感图像增强
- DOI:
10.1007/s12652-021-02957-9 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rajni Sharma;M. Ravinder;Nitin Sharma;Kanchan Sharma - 通讯作者:
Kanchan Sharma
Reprogramming assimilate partitioning in the second half of the night supports grain filling in inferior spikelets under high night temperature stress in rice
夜间后半段对同化物分配进行重新编程,有助于水稻在夜间高温胁迫下弱势小穗的籽粒灌浆
- DOI:
10.1016/j.stress.2025.100773 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.900
- 作者:
Nitin Sharma;Dinesh Kumar Saini;Suchitra Pushkar;Impa Somayanda;S.V. Krishna Jagadish;Anjali Anand - 通讯作者:
Anjali Anand
Nitin Sharma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin Sharma', 18)}}的其他基金
Collaborative Research: Integrated Swimming Microrobots for Intravascular Neuromodulation
合作研究:用于血管内神经调节的集成游泳微型机器人
- 批准号:
2324999 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Standard Grant
SCH: Wearable Multi-Modal Sensing and Stimulation Arrays for Muscle-Aware Exoskeleton Control
SCH:用于肌肉感知外骨骼控制的可穿戴多模态传感和刺激阵列
- 批准号:
2124017 - 财政年份:2021
- 资助金额:
$ 50.91万 - 项目类别:
Standard Grant
CAREER: Ultrasound-based Intent Modeling and Control Framework for Neurorehabilitation and Educating Children with Disabilities and High School Students
职业:基于超声的意图建模和控制框架,用于神经康复和教育残疾儿童和高中生
- 批准号:
2002261 - 财政年份:2019
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
Coordinating Electrical Stimulation and Motor Assist in a Hybrid Neuroprosthesis Using Control Strategies Inspired by Human Motor Control
使用受人类运动控制启发的控制策略协调混合神经假体中的电刺激和运动辅助
- 批准号:
1462876 - 财政年份:2015
- 资助金额:
$ 50.91万 - 项目类别:
Standard Grant
UNS: Optimal Adaptive Control Methods for a Hybrid Exoskeleton
UNS:混合外骨骼的最优自适应控制方法
- 批准号:
1511139 - 财政年份:2015
- 资助金额:
$ 50.91万 - 项目类别:
Continuing Grant
相似海外基金
Phase-change nanodroplets for ultrasound based theranostics
用于超声治疗诊断的相变纳米液滴
- 批准号:
2899729 - 财政年份:2024
- 资助金额:
$ 50.91万 - 项目类别:
Studentship
Development of internal radiation therapy agents for refractory breast cancer based on phase-shift using focused ultrasound
基于聚焦超声相移的难治性乳腺癌体内放射治疗剂的开发
- 批准号:
23H02866 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel in-vivo ultrasound-based point-of-care instrument to assess myopia level andprogression
用于评估近视程度和进展的新型体内超声护理仪器
- 批准号:
10669915 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
B7-H3 Targeted Ultrasound Molecular Imaging System for Early Breast Cancer and Metastatic Detection
B7-H3 用于早期乳腺癌和转移检测的靶向超声分子成像系统
- 批准号:
10584161 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Vector Flow Velocity Imaging of Human Placenta using Angle-resolved Ultrasound and Deep Learning
使用角度分辨超声和深度学习对人胎盘进行矢量血流速度成像
- 批准号:
10886180 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Blending ultrasound data with physics-based models to predict damage in structural systems
将超声数据与基于物理的模型混合以预测结构系统的损坏
- 批准号:
2886009 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Studentship
Indoor depth estimation based on ultrasound and deep learning
基于超声和深度学习的室内深度估计
- 批准号:
23K11154 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-modal, multi-parametric liver imaging for ultrasound-based stratification of patients with non-alcoholic fatty liver disease
多模式、多参数肝脏成像对非酒精性脂肪肝患者进行基于超声的分层
- 批准号:
478764 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别:
Operating Grants
Quantitative assessment of angiogenesis using ultrasound multiple scattering
使用超声多重散射定量评估血管生成
- 批准号:
10718807 - 财政年份:2023
- 资助金额:
$ 50.91万 - 项目类别: