UNS: Optimal Adaptive Control Methods for a Hybrid Exoskeleton
UNS:混合外骨骼的最优自适应控制方法
基本信息
- 批准号:1511139
- 负责人:
- 金额:$ 26.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Restoration of walking and standing function is one of the most desired interventions that would improve quality of life of persons with paraplegia. Evidence supports that the users of walking devices experience fewer secondary medical complications than wheelchair users. To restore walking and standing function, a hybrid exoskeleton that combines functional electrical stimulation (FES) with a powered exoskeleton can be more advantageous than an FES-based walking system or a powered exoskeleton alone. Little research has gone into the design and evaluation of control methods for a hybrid exoskeleton. Using FES and an electric motor, the proposed research will investigate an automatic control method to produce shared or cooperative force at a limb joint. The proposed algorithm will be able to maintain cooperation between FES and the electric motor even when FES-induced muscle fatigue sets in. Advances in shared control imply that smaller and light weight exoskeletons can be designed because FES can be additionally used to exploit a user's inherent muscle power. The use of FES in the hybrid neuroprosthesis will also provide therapeutic benefits; e.g., application of FES improves cardiovascular fitness, motor-skill relearning, and increased muscle mass and fatigue resistance. Thus, the proposed study will provide substantial benefits to society by improving quality of life of individuals with mobility impairments and increasing their community participation.The proposed research will investigate cutting-edge control methods that are based on reinforcement learning (RL) principles for simultaneously controlling FES and an electric motor. The current ad hoc techniques used to control both FES and an active orthosis together in a hybrid device do not necessarily adapt with muscle fatigue - a major limiting factor in an FES-based technology. Moreover, the dissimilar dynamics of FES and the electric motor can cause instability during walking, which can potentially lead to injury due to falling. The new RL control techniques will compute approximate optimal solutions in real-time and will be applicable to dynamic systems that are driven by multiple actuators with dissimilar dynamics. The specific aims of the proposal are to investigate and evaluate RL-based actor-critic control methods on a hybrid leg extension machine and a hybrid walking device. The proposed experiments will measure any reduction in the overall power requirement of the hybrid system and its dependence on the muscle fatigue. The research will also result in a phenomenological model of common peroneal nerve (CPN) stimulation, which is used to elicit hip flexion during walking. This model will build an understanding on habituation and elicitation characteristics of the CPN stimulation. In collaboration with a physiatrist, experiments will be conducted on able-bodied subjects and a participant with spinal cord injury.
恢复行走和站立功能是最理想的干预措施之一,将提高截瘫患者的生活质量。有证据表明,与轮椅使用者相比,使用助行器的人经历的继发性医疗并发症更少。为了恢复行走和站立功能,将功能性电刺激(FES)与动力外骨骼相结合的混合外骨骼可能比基于FES的行走系统或单独的动力外骨骼更有利。对混合外骨骼控制方法的设计和评价研究很少。利用FES和电动马达,研究在肢体关节处产生共享力或协同力的自动控制方法。该算法将能够在FES引起的肌肉疲劳中保持FES和电动机之间的合作。共享控制方面的进步意味着可以设计出更小、更轻的外骨骼,因为FES可以额外利用用户固有的肌肉力量。在混合神经假体中使用FES也将提供治疗益处;例如,FES的应用可以改善心血管健康,运动技能再学习,增加肌肉质量和抗疲劳能力。因此,拟议的研究将通过改善行动障碍个人的生活质量和增加他们的社区参与,为社会提供实质性的利益。拟议的研究将研究基于强化学习(RL)原理的尖端控制方法,以同时控制FES和电动机。目前用于在混合装置中同时控制FES和主动矫形器的特殊技术不一定能适应肌肉疲劳-这是基于FES技术的主要限制因素。此外,FES和电动机的不同动力会导致行走时的不稳定,这可能导致因跌倒而受伤。新的RL控制技术将实时计算近似最优解,并将适用于由具有不同动力学的多个执行器驱动的动态系统。该提案的具体目的是研究和评估基于rl的混合腿部伸展机和混合步行装置的演员评论家控制方法。提出的实验将测量混合系统的总功率需求的任何减少及其对肌肉疲劳的依赖。该研究还将产生腓总神经(CPN)刺激的现象学模型,该模型用于在行走时引起髋关节屈曲。该模型将建立对CPN刺激的习惯化和激发特征的理解。与一名物理医师合作,实验将在身体健全的受试者和脊髓损伤的参与者中进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin Sharma其他文献
Transmission of Hidden Cipher Text over a Binary Symmetric Channel
隐藏密文在二进制对称信道上的传输
- DOI:
10.5120/8501-2451 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Rana;Nitin Sharma;Parveen Malik - 通讯作者:
Parveen Malik
Gamma correction based satellite image enhancement using singular value decomposition and discrete wavelet transform
使用奇异值分解和离散小波变换进行基于伽玛校正的卫星图像增强
- DOI:
10.1109/icaccct.2014.7019306 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nitin Sharma;O. Verma - 通讯作者:
O. Verma
Phytochemical screening, antimicrobial, antioxidant and cytotoxic potential of different extracts of Psidium guajava leaves
番石榴叶不同提取物的植物化学筛选、抗菌、抗氧化和细胞毒性潜力
- DOI:
10.1007/s42535-020-00151-4 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Raj;Vikas Menon;Nitin Sharma - 通讯作者:
Nitin Sharma
An optimal remote sensing image enhancement with weak detail preservation in wavelet domain
小波域弱细节保留的最优遥感图像增强
- DOI:
10.1007/s12652-021-02957-9 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rajni Sharma;M. Ravinder;Nitin Sharma;Kanchan Sharma - 通讯作者:
Kanchan Sharma
Reprogramming assimilate partitioning in the second half of the night supports grain filling in inferior spikelets under high night temperature stress in rice
夜间后半段对同化物分配进行重新编程,有助于水稻在夜间高温胁迫下弱势小穗的籽粒灌浆
- DOI:
10.1016/j.stress.2025.100773 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.900
- 作者:
Nitin Sharma;Dinesh Kumar Saini;Suchitra Pushkar;Impa Somayanda;S.V. Krishna Jagadish;Anjali Anand - 通讯作者:
Anjali Anand
Nitin Sharma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin Sharma', 18)}}的其他基金
Collaborative Research: Integrated Swimming Microrobots for Intravascular Neuromodulation
合作研究:用于血管内神经调节的集成游泳微型机器人
- 批准号:
2324999 - 财政年份:2023
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
SCH: Wearable Multi-Modal Sensing and Stimulation Arrays for Muscle-Aware Exoskeleton Control
SCH:用于肌肉感知外骨骼控制的可穿戴多模态传感和刺激阵列
- 批准号:
2124017 - 财政年份:2021
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
CAREER: Ultrasound-based Intent Modeling and Control Framework for Neurorehabilitation and Educating Children with Disabilities and High School Students
职业:基于超声的意图建模和控制框架,用于神经康复和教育残疾儿童和高中生
- 批准号:
2002261 - 财政年份:2019
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
CAREER: Ultrasound-based Intent Modeling and Control Framework for Neurorehabilitation and Educating Children with Disabilities and High School Students
职业:基于超声的意图建模和控制框架,用于神经康复和教育残疾儿童和高中生
- 批准号:
1750748 - 财政年份:2018
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Coordinating Electrical Stimulation and Motor Assist in a Hybrid Neuroprosthesis Using Control Strategies Inspired by Human Motor Control
使用受人类运动控制启发的控制策略协调混合神经假体中的电刺激和运动辅助
- 批准号:
1462876 - 财政年份:2015
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
相似海外基金
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 26.62万 - 项目类别:
Studentship
Optimal experimental designs and response-adaptive designs
最佳实验设计和响应自适应设计
- 批准号:
RGPIN-2018-06452 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Framework for Optimal Active 3D Imaging
最佳主动 3D 成像的自适应框架
- 批准号:
547329-2020 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Discovery Grants Program - Individual
ERI: Improving the Learning Efficiency of Adaptive Optimal Control Systems in Information-Limited Environments
ERI:提高信息有限环境中自适应最优控制系统的学习效率
- 批准号:
2138206 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Determining the long-term outcomes and optimal treatment of childhood nephrotic syndrome using population-based administrative health data, target trial emulation, and a pilot adaptive clinical trial of a precision medicine treatment strategy
使用基于人群的管理健康数据、目标试验模拟和精准医学治疗策略的试点适应性临床试验来确定儿童肾病综合征的长期结果和最佳治疗
- 批准号:
475537 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Studentship Programs
CAREER: Exact Optimal and Data-Adaptive Algorithms and Tools for Differential Privacy
职业:用于差异隐私的精确最优和数据自适应算法和工具
- 批准号:
2048091 - 财政年份:2021
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 26.62万 - 项目类别:
Discovery Grants Program - Individual
Dynamic and Self-adaptive Multi-agent Network for Optimal Operation of Engineering Processes
用于工程过程优化运行的动态自适应多智能体网络
- 批准号:
RGPIN-2017-04456 - 财政年份:2021
- 资助金额:
$ 26.62万 - 项目类别:
Discovery Grants Program - Individual