SPX: Collaborative Research: Pinpointing and Resolving Scalability Culprits Hidden in Different Components of the Whole System Stack
SPX:协作研究:查明并解决隐藏在整个系统堆栈不同组件中的可扩展性问题
基本信息
- 批准号:1823005
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern computers leverage multi-core or many-core processors to accelerate parallel applications. Unfortunately, the speedup of these applications is typically far from ideal, due to some hidden scalability issues. Previous research mainly focuses on application code to identify scalability bottlenecks, neglecting the fact that the application code interacts with numerous external components, including memory allocator, third-party runtime libraries, and the operating system. Understanding and fixing scalability problems should hence go beyond application code and consider the whole software stack. The project's novelties are to pinpoint scalability culprits hidden in different components of the whole stack and automatically fix the scalability bottlenecks. The project's impacts are significantly improved performance for applications running on multi-core processors and thus accelerated scientific discoveries and energy saving.This project aims to systematically pinpoint and resolve latent software contention in all components of the whole software stack from user space. The proposed approaches are urgent due to the pervasive use of multi-core and many-core hardware. Also, according to Amdahl's law, a small degree of latent contention in any of the components may substantially limit the speedup potential on these modern hardware. The research plans to design low-overhead profilers to obtain runtime information for system calls, memory allocator behaviors, and all interacting events between components, as well as analyzers to automatically pinpoint the root causes of scalability bottlenecks. Through a runtime optimizer, the research aims to fix the identified scalability issues without intervention from the programmer. The project has potential to dramatically reduce manual effort for software optimization and improve performance for parallel applications on modern hardware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机利用多核或众核处理器来加速并行应用。不幸的是,由于一些隐藏的可伸缩性问题,这些应用程序的加速通常远非理想。以前的研究主要集中在应用程序代码,以确定可扩展性的瓶颈,忽略了这样一个事实,即应用程序代码与众多的外部组件,包括内存分配器,第三方运行时库,和操作系统的交互。因此,理解和修复可伸缩性问题应该超越应用程序代码,并考虑整个软件堆栈。该项目的新颖之处在于,它可以精确定位隐藏在整个堆栈的不同组件中的可伸缩性问题,并自动修复可伸缩性瓶颈。该项目的影响是显着提高多核处理器上运行的应用程序的性能,从而加速科学发现和节能。该项目旨在从用户空间系统地查明和解决整个软件堆栈的所有组件中潜在的软件竞争。由于多核和众核硬件的普遍使用,所提出的方法是迫切的。此外,根据Amdahl定律,任何组件中的小程度的潜在竞争都可能大大限制这些现代硬件上的加速潜力。该研究计划设计低开销的分析器来获取系统调用,内存分配器行为和组件之间所有交互事件的运行时信息,以及分析器来自动查明可扩展性瓶颈的根本原因。通过一个运行时优化器,研究的目的是修复识别的可伸缩性问题,而无需程序员的干预。该项目有可能大大减少软件优化的人工工作,并提高现代硬件上并行应用程序的性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Irregularity-Aware Fine-Grained Workload Partitioning on Integrated Architectures
集成架构上的自动不规则感知细粒度工作负载分区
- DOI:10.1109/tkde.2019.2940184
- 发表时间:2021-03
- 期刊:
- 影响因子:8.9
- 作者:Zhang Feng;Zhai Jidong;Wu Bo;He Bingsheng;Chen Wenguang;Du Xiaoyong
- 通讯作者:Du Xiaoyong
AutoMine: harmonizing high-level abstraction and high performance for graph mining
- DOI:10.1145/3341301.3359633
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Daniel Mawhirter;Bo Wu
- 通讯作者:Daniel Mawhirter;Bo Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Wu其他文献
SPread: Exploiting fractal social community For efficient multi-coPy routing in VDTNs
SPread:利用分形社交社区在 VDTN 中实现高效的多副本路由
- DOI:
10.1109/iccnc.2017.7876149 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bo Wu;Kang;Haiying Shen - 通讯作者:
Haiying Shen
Evaluation of effective elastic constants for polycrystalline PZT thin films by XRD patterns and pole figures
通过 XRD 图案和极图评估多晶 PZT 薄膜的有效弹性常数
- DOI:
10.1007/s11771-007-0229-3 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Xuejun Zheng;Liping Tang;Qin;Bo Wu - 通讯作者:
Bo Wu
Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application
可拉伸热电发生器,通过红外反射增强输出,适用于可穿戴应用
- DOI:
10.1016/j.cej.2022.139749 - 发表时间:
2022-10 - 期刊:
- 影响因子:15.1
- 作者:
Bo Wu;Wei Wei;Yang Guo;Weng Hou Yip;Beng Kang Tay;Chengyi Hou;Qinghong Zhang;Yaogang Li;Hongzhi Wang - 通讯作者:
Hongzhi Wang
An Investigation of Half-Metallic Ferromagnets Behavior in Hg2CuTi-Type Heusler Alloy Ti2FeAl by Using GGA
利用 GGA 研究 Hg2CuTi 型 Heusler 合金 Ti2FeAl 中的半金属铁磁体行为
- DOI:
10.4028/www.scientific.net/amr.535-537.1291 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiude Yang;Bo Wu;Song Zhang - 通讯作者:
Song Zhang
Amyloid b proteins inhibit Cl 2 -ATPase activity in cultured rat hippocampal neurons
淀粉样蛋白 b 抑制培养的大鼠海马神经元中的 Cl 2 -ATP 酶活性
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
K. Yagyu;K. Kitagawa;T. Irie;Bo Wu;Xun;N. Hattori;C. Inagaki - 通讯作者:
C. Inagaki
Bo Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Wu', 18)}}的其他基金
CAREER: Compiler and Runtime Support for Multi-Tasking on Commodity GPUs
职业:商用 GPU 上多任务的编译器和运行时支持
- 批准号:
1750760 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
CSR: Small: Collaborative Research: Exploring Portable Data Placement on Massively Parallel Platforms with Heterogeneous Memory Architectures
CSR:小型:协作研究:探索具有异构内存架构的大规模并行平台上的便携式数据放置
- 批准号:
1618912 - 财政年份:2016
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CRII: SHF: A Compiler and Runtime Infrastructure for Flexible Scheduling and Scheduling-Enabled Optimizations on GPUs
CRII:SHF:用于 GPU 上灵活调度和启用调度优化的编译器和运行时基础架构
- 批准号:
1464216 - 财政年份:2015
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant