CAREER: Toward Spatial-Temporal Architectures with Deformable and Interpretable Convolutions
职业:走向具有可变形和可解释卷积的时空架构
基本信息
- 批准号:1751402
- 负责人:
- 金额:$ 51.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial neural networks have successfully been applied to analyzing visual imagery. The goal of this project is to build a convolutional neural network (CNN) that can scale and deform automatically in order to be able to be invariant to object size and pose.Currently, CNNs cannot even perform well on an image rescaled twice or half as large, if not trained on the re-scaled image. This leads to a lot of redundancies in the model and unnecessary over-complication of the architecture. This project explores approaches to automatically figure out the correct scaling, as well as other transformations, from visual objects in images and videos. The proposed methods will also make convolutional neural networks easier to interpret, and to reduce the amount of data needed to train a network.Besides normal computer vision benchmarks, the research team evaluates the approach with collaborations to apply the technologies to different applications, such as forestry and tumor-cell morphology, The educational goal of this project involves developing a new ?what-you-see-is-what-you-get? (WYSIWYG) deep learning toolbox that enables people without much programming and mathematical skills to utilize deep learning for data analysis. The research team also plans to outreach to high schools and community colleges to introduce more than 100 students to deep learning and visual object recognition. This research develops spatial-temporal CNNs that scale and deform automatically, hence able to concisely represent object recognition models that generalize better under invariant and equivariant transformations unseen in the training set. The project explores novel auto-scaling and multi-deformable convolutional network architectures that utilize parametric motion fields to automatically locate the correct deformations of a visual object for each convolutional filter. In order to learn the motion fields from video, the research team uses a Siamese convolutional-deconvolutional network predicting boundaries in two consecutive frames, and utilizes an output-to-output feedback loop to deduce boundary motion. The research team applies this approach to video segmentation and uses it to generate annotations for a weakly supervised learning of the motion fields. The approach is evaluated on several tasks with limited annotations, such as video segmentation, multi-target tracking and object classification and detection in videos under unseen deformations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工神经网络已成功地应用于视觉图像分析。这个项目的目标是建立一个卷积神经网络(CNN),它可以自动缩放和变形,以便能够保持物体大小和姿态的不变。目前,如果没有在重新缩放的图像上进行训练,cnn甚至不能在重新缩放的图像上表现良好。这将导致模型中的大量冗余和架构的不必要的过度复杂性。该项目探索了从图像和视频中的可视对象自动找出正确缩放以及其他转换的方法。所提出的方法还将使卷积神经网络更容易解释,并减少训练网络所需的数据量。除了常规的计算机视觉基准之外,研究小组还通过合作评估了将该技术应用于不同应用的方法,例如林业和肿瘤细胞形态学。该项目的教育目标包括开发一种新的“所见即所得”技术。(WYSIWYG)深度学习工具箱,使没有太多编程和数学技能的人能够利用深度学习进行数据分析。研究小组还计划向高中和社区大学推广,向100多名学生介绍深度学习和视觉物体识别。该研究开发了自动缩放和变形的时空cnn,从而能够简洁地表示在训练集中不可见的不变和等变变换下更好地泛化的目标识别模型。该项目探索了新的自动缩放和多变形卷积网络架构,利用参数化运动场来自动定位每个卷积滤波器的视觉对象的正确变形。为了从视频中学习运动场,研究团队使用Siamese卷积-反卷积网络预测两个连续帧的边界,并利用输出到输出反馈回路推断边界运动。研究小组将这种方法应用于视频分割,并使用它为运动场的弱监督学习生成注释。在视频分割、多目标跟踪、不可见变形视频中的目标分类和检测等任务中,对该方法进行了评价。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PointPWC-Net: Cost Volume on Point Clouds for (Self-)Supervised Scene Flow Estimation
- DOI:10.1007/978-3-030-58558-7_6
- 发表时间:2020
- 期刊:
- 影响因子:6.6
- 作者:Wenxuan Wu;Zhiyuan Wang;Zhuwen Li;Wei Liu;Fuxin Li
- 通讯作者:Wenxuan Wu;Zhiyuan Wang;Zhuwen Li;Wei Liu;Fuxin Li
ScaleNet - Improve CNNs through Recursively Rescaling Objects
- DOI:10.1609/aaai.v34i07.6806
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Xingyi Li;Zhongang Qi;Xiaoli Z. Fern;Li Fuxin
- 通讯作者:Xingyi Li;Zhongang Qi;Xiaoli Z. Fern;Li Fuxin
Improving the Robustness of Point Convolution on k-Nearest Neighbor Neighborhoods with a Viewpoint-Invariant Coordinate Transform
- DOI:10.1109/wacv56688.2023.00134
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Xingyi Li;Wenxuan Wu;Xiaoli Z. Fern;Li Fuxin
- 通讯作者:Xingyi Li;Wenxuan Wu;Xiaoli Z. Fern;Li Fuxin
Adversarial Training on Point Clouds for Sim-to-Real 3D Object Detection
用于模拟真实 3D 物体检测的点云对抗训练
- DOI:10.1109/lra.2021.3093869
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:DeBortoli, Robert;Fuxin, Li;Kapoor, Ashish;Hollinger, Geoffrey A.
- 通讯作者:Hollinger, Geoffrey A.
Visualizing point cloud classifiers by curvature smoothing
- DOI:
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Ziwen Chen;Wenxuan Wu;Zhongang Qi;Fuxin Li
- 通讯作者:Ziwen Chen;Wenxuan Wu;Zhongang Qi;Fuxin Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fuxin Li其他文献
Computer vision, machine learning, pattern recognition and natural language processing. Specic interests in segment-based object recognition, scene understanding and semantic segmentation, video object segmentation and recognition, composite statistical inference, large-scale machine learning, Monte
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Fuxin Li - 通讯作者:
Fuxin Li
Digging into Human Rights Violations: phrase mining and trigram visualization
深入探讨侵犯人权行为:短语挖掘和三元组可视化
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Miller;Fuxin Li;Ayush Shrestha;K. Umapathy - 通讯作者:
K. Umapathy
Polarization effects on backscattering light from tissue with Monte Carlo simulation and its application in melanoma diagnosis
蒙特卡罗模拟偏振对组织后向散射光的影响及其在黑色素瘤诊断中的应用
- DOI:
10.1117/12.575499 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hongsheng Wen;Jianguo Tian;Fuxin Li;Lianshun Zhang;Chun - 通讯作者:
Chun
Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis
下调 CHI3L1 可减轻脓毒症小鼠模型中的骨骼肌干细胞损伤
- DOI:
10.1002/iub.2156 - 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Fuxin Li;Zhiyong Sheng;Haibing Lan;Jianning Xu;Juxiang Li - 通讯作者:
Juxiang Li
Learning Explainable Embeddings for Deep Networks
学习深度网络的可解释嵌入
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhongang Qi;Fuxin Li - 通讯作者:
Fuxin Li
Fuxin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fuxin Li', 18)}}的其他基金
RI: Small: Collaborative Research: Topology-Aware Image Understanding using Deep Variational Objectives
RI:小型:协作研究:使用深度变分目标的拓扑感知图像理解
- 批准号:
1911232 - 财政年份:2019
- 资助金额:
$ 51.37万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Human-in-the-Loop Fairness Optimization in Machine Learning with Minimax Loss and an Abstain Option
AI-DCL:EAGER:具有最小最大损失和弃权选项的机器学习中的人机循环公平性优化
- 批准号:
1927564 - 财政年份:2019
- 资助金额:
$ 51.37万 - 项目类别:
Standard Grant
CRII: RI: Large-Scale Discovery and Organization of Subcategories and Parts from Image and Video Segments
CRII:RI:图像和视频片段中子类别和部分的大规模发现和组织
- 批准号:
1464371 - 财政年份:2015
- 资助金额:
$ 51.37万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
相似海外基金
Urban Nature-based Solutions: Scenario-based Spatial Assessment of Benefits and Equity Toward SDG11
基于城市自然的解决方案:基于情景的空间评估,实现可持续发展目标 11
- 批准号:
22KF0054 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Toward sustainable cities: An economic analysis of the impact of electric vehicle adoption on urban spatial structures
迈向可持续城市:电动汽车采用对城市空间结构影响的经济分析
- 批准号:
23K18805 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Toward the evaluation of human impacts on river discharge: High-resolution estimation of spatial discharge changes using AMHG scheme
评估人类对河流流量的影响:使用 AMHG 方案对空间流量变化进行高分辨率估计
- 批准号:
23KJ0709 - 财政年份:2023
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Chronological and spatial analysis of urban and psychological resilience toward COVID-19 pandemic
对 COVID-19 大流行的城市和心理复原力的时间和空间分析
- 批准号:
21K18765 - 财政年份:2021
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Toward understanding regulatory system of spatial gene expression
理解空间基因表达的调控系统
- 批准号:
19H03424 - 财政年份:2019
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatial Structure of the National Capital Region of Delhi: Toward the Creation of Urban Theories for Emerging Nations
德里国家首都地区的空间结构:为新兴国家创造城市理论
- 批准号:
19H01384 - 财政年份:2019
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Toward Sustainable Urban Water Management through a Twofold Approach: Enhanced Landscape Modeling and Strategic Spatial Placement of Stormwater Control Measures
职业:通过双重方法实现可持续城市水管理:增强景观建模和雨水控制措施的战略空间布局
- 批准号:
1553475 - 财政年份:2016
- 资助金额:
$ 51.37万 - 项目类别:
Standard Grant
Elucidation of patterns of spatial and social changes toward the protection of cultural landscapes in traditional waterside customs
阐释传统水乡习俗文化景观保护的空间和社会变迁模式
- 批准号:
16K21711 - 财政年份:2016
- 资助金额:
$ 51.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)