AI-DCL: EAGER: Human-in-the-Loop Fairness Optimization in Machine Learning with Minimax Loss and an Abstain Option

AI-DCL:EAGER:具有最小最大损失和弃权选项的机器学习中的人机循环公平性优化

基本信息

  • 批准号:
    1927564
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project will implement machine learning algorithms that explores tradeoffs involving three factors: accuracy, fairness, and input data coverage. On the computational side, the project has the potential to bring about a paradigm shift for fair machine learning algorithms while improving uncertainty estimates for those algorithms. The project also includes the development of a human-in-the-loop optimization algorithm to enable humans to dynamically tune the three factors and thereby interact with the algorithm. On the sociological side, this work will provide a cross-cultural study of subject preferences when presented with quantifiable tradeoffs between the three specified factors; it will focus on behavioral differences between individuals in response to their interactive explorations of how the tradeoffs work. The results of this study will serve to complement prior related research that is more qualitative. The results of this study could have substantial impacts on policy making on machine learning algorithms. They could also serve to improve the public's in machine learning algorithms and enable more human-machine teams, which is important in the current era where machine learning algorithms have increasingly become black boxes while being more broadly deployed in many crucial real-life applications.The goal of this project is to study the trade-off between accuracy, fairness, and data coverage in machine learning algorithms. The research team plans to develop novel hybrid human/machine-learning algorithms with an integrated, optimizable fairness component. The specific objectives are to develop algorithms that are designed to trade-off between three factors: (1) the traditional average error objective that pertains to utility, (2) a minimax error objective that minimize the maximal error occurring to any training example, which pertains to fairness, and (3) the coverage of the algorithm on the input distribution by providing an abstain option that the algorithm can utilize when it is not confident in giving a correct answer. The team will develop their algorithms using saddle point optimization approaches in zero-sum games. A human-in-the-loop optimization algorithm will be designed for humans to dynamically tune the three factors to facilitate interaction with the algorithm. The team will use a hybrid iterative approach to algorithm design and testing that is based in grounded theory, which is widely used in the human and social sciences. Humans will provide directions (more fairness) and specify the groups they want to cover, while the real-valued changes will be automatically computed. In order to better understand of trade-offs on utility, fairness and coverage from a sociological perspective, a broad cross-cultural evaluation will be performed with multiple social-cultural groups in the United States as well as an online platform to reach global users in China and Brazil.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将实现机器学习算法,探索涉及三个因素的权衡:准确性,公平性和输入数据覆盖率。在计算方面,该项目有可能为公平的机器学习算法带来范式转变,同时改善这些算法的不确定性估计。该项目还包括开发一种人在回路优化算法,使人类能够动态调整这三个因素,从而与算法进行交互。在社会学方面,这项工作将提供一个跨文化的主题偏好的研究时,提出了可量化的权衡之间的三个指定的因素,它将集中在个人之间的行为差异,以响应他们的互动探索如何权衡工作。这项研究的结果将有助于补充以前的相关研究,这是更定性。这项研究的结果可能会对机器学习算法的政策制定产生重大影响。在机器学习算法越来越多地成为黑箱,同时被广泛应用于许多关键的现实生活应用的当今时代,这一点非常重要。本项目的目标是研究机器学习算法中准确性、公平性和数据覆盖率之间的权衡。该研究小组计划开发新的混合人类/机器学习算法,其中包含集成的、可优化的公平组件。具体目标是开发旨在权衡以下三个因素的算法:(1)属于效用的传统平均误差目标,(2)最小化任何训练样本发生的最大误差的最小化误差目标,其属于公平性,以及(3)通过提供弃权选项来提高算法对输入分布的覆盖率,当算法不确信给出正确答案时可以利用该弃权选项。该团队将在零和游戏中使用鞍点优化方法开发他们的算法。将设计一种人在回路优化算法,供人类动态调整这三个因素,以促进与算法的交互。该团队将使用基于扎根理论的混合迭代方法来进行算法设计和测试,该方法广泛应用于人类和社会科学。人类将提供方向(更公平),并指定他们想要覆盖的群体,而实际值的变化将自动计算。为了从社会学的角度更好地理解效用、公平和覆盖面的权衡,一个广泛的跨文化评估将与多个社会-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响力进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rediscovering the human in AI design for fairness
在人工智能设计中重新发现人性以实现公平
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fuxin Li其他文献

Digging into Human Rights Violations: phrase mining and trigram visualization
深入探讨侵犯人权行为:短语挖掘和三元组可视化
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Miller;Fuxin Li;Ayush Shrestha;K. Umapathy
  • 通讯作者:
    K. Umapathy
Polarization effects on backscattering light from tissue with Monte Carlo simulation and its application in melanoma diagnosis
蒙特卡罗模拟偏振对组织后向散射光的影响及其在黑色素瘤诊断中的应用
Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis
下调 CHI3L1 可减轻脓毒症小鼠模型中的骨骼肌干细胞损伤
  • DOI:
    10.1002/iub.2156
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fuxin Li;Zhiyong Sheng;Haibing Lan;Jianning Xu;Juxiang Li
  • 通讯作者:
    Juxiang Li
Learning Explainable Embeddings for Deep Networks
学习深度网络的可解释嵌入
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongang Qi;Fuxin Li
  • 通讯作者:
    Fuxin Li

Fuxin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fuxin Li', 18)}}的其他基金

RI: Small: Collaborative Research: Topology-Aware Image Understanding using Deep Variational Objectives
RI:小型:协作研究:使用深度变分目标的拓扑感知图像理解
  • 批准号:
    1911232
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Toward Spatial-Temporal Architectures with Deformable and Interpretable Convolutions
职业:走向具有可变形和可解释卷积的时空架构
  • 批准号:
    1751402
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CRII: RI: Large-Scale Discovery and Organization of Subcategories and Parts from Image and Video Segments
CRII:RI:图像和视频片段中子类别和部分的大规模发现和组织
  • 批准号:
    1464371
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
套索RNA通过拮抗DCL1复合物抑制植物miRNA产生的分子机制
  • 批准号:
    31671261
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
拟南芥DCL4介导、不依赖DRB4的新抗病毒RNA沉默分子机制研究
  • 批准号:
    31570145
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
DCL在DNAmβ诱导的基因沉默和抗TYLCCNV病毒中的功能分析
  • 批准号:
    30771406
  • 批准年份:
    2007
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
  • 批准号:
    2335798
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Generative AI-based Personalized Cybersecurity Tutor for Fourth Industrial Revolution
教育 DCL:EAGER:第四次工业革命的基于生成人工智能的个性化网络安全导师
  • 批准号:
    2335046
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Developing Experiential Cybersecurity and Privacy Training for AI Practitioners
教育 DCL:EAGER:为人工智能从业者开发体验式网络安全和隐私培训
  • 批准号:
    2335700
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
  • 批准号:
    2125116
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
  • 批准号:
    2127754
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Addressing sociotechnical challenges of conversational agents and interventions in the context of elderly care
EAGER:AI-DCL:解决老年护理背景下对话代理和干预措施的社会技术挑战
  • 批准号:
    1927190
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Hybrid human algorithm predictions: balancing effort, accuracy, and perceived autonomy
EAGER:AI-DCL:混合人类算法预测:平衡努力、准确性和感知自主性
  • 批准号:
    1927245
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: Collaborative Research: EAGER: Understanding and Alleviating Potential Biases in Large Scale Employee Selection Systems: The Case of Automated Video Interviews
AI-DCL:协作研究:EAGER:理解和减轻大规模员工选拔系统中的潜在偏见:自动视频面试的案例
  • 批准号:
    1921111
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
  • 批准号:
    1927322
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
  • 批准号:
    1927422
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了