CAREER: Understanding Forces in Far-from-Equilibrium Materials Processing Under Electromagnetic Fields

职业:了解电磁场下非平衡材料加工中的力

基本信息

  • 批准号:
    1751605
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Electromagnetic (EM) waves such as microwave radiation (used to rapidly heat our food) can enable low temperature, energy-efficient manufacturing processes, even for materials that conventionally require processing at extremely high temperatures, such as ceramics. This Faculty Early Career Development Program (CAREER) Award supports fundamental research that will investigate how EM waves exert forces inside ceramic materials, potentially enabling the three-dimensional (3D) printing of ceramics. These 3D printed ceramic parts will find use in various areas including sustainable infrastructure, transportation, clean energy, water management, aerospace, and healthcare. Such technological advances in manufacturing advanced materials using EM waves will lead to a smaller energy footprint compared to conventional methods and as such can provide significant savings in energy use in the manufacture of high-strength materials. This research requires linking together advances in multiple disciplines such as electrical and computer engineering, electromagnetics, materials science, mechanical, and chemical engineering. Accordingly, an integrated research and education plan using game-based technology enhanced learning will allow students to explore this multidisciplinary area through hands-on training and visualization of materials processing. Popular builder's games are well equipped for teaching students how building (processing) can change the way materials assemble (structure) and lead to differences in properties such as mechanical behavior and strength. Games create a higher level of student engagement and a more stimulating learning environment, reaching a broader spectrum of learners in classrooms, addressing the challenge of cultivating a diverse and highly skilled workforce in manufacturing in the United States.This research will support a multifaceted investigation to discover the mechanisms of electromagnetic (EM) field induced charge transport in refractory ceramic oxides such as zirconia, under ponderomotive driving forces. EM field interactions will be selectively localized to conduct both solid and liquid phase synthesis experiments to grow ceramic films on conducting (metal) layers under microwave radiation. The research team will first use various nanoscale characterization tools to conduct static ex-situ studies on atomic structure; defect structure; and microstructural changes in films grown under (i) no applied field and (ii) different intensity, frequency, and polarizations of the applied field. Next, dynamic in-situ studies will use polarized neutron reflectometry to follow tracer ions in a film, comparing transport properties like diffusion coefficients for varying field parameters at fixed temperature. Computational methods including molecular dynamics simulations will predict and compare diffusion coefficient values for each experimental case. This study is the first to combine experiment and computation to demonstrate the effect of ponderomotive forces on atomic scale transport phenomena under EM fields. Finally, knowledge about the influence of ponderomotive forces on ceramic processing will be applied to create a novel platform for additive manufacture of ceramics at low temperatures, using a layer-by-layer approach. The research tasks will proceed simultaneously with an education and outreach program, which involves an integrated game/classroom approach to learning processing-structure-property relationships in additive manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电磁(EM)波,如微波辐射(用于快速加热我们的食物)可以实现低温,节能的制造工艺,即使是传统上需要在极高温度下加工的材料,如陶瓷。该学院早期职业发展计划(CAREER)奖支持基础研究,研究电磁波如何在陶瓷材料内部施加力,从而可能实现陶瓷的三维(3D)打印。这些3D打印的陶瓷部件将用于可持续基础设施、交通、清洁能源、水管理、航空航天和医疗保健等各个领域。与传统方法相比,使用EM波制造先进材料的这种技术进步将导致更小的能量足迹,因此可以在制造高强度材料时显著节省能源。这项研究需要将多个学科的进展联系在一起,如电气和计算机工程,电磁学,材料科学,机械和化学工程。因此,使用基于游戏的技术增强学习的综合研究和教育计划将允许学生通过动手培训和材料加工的可视化来探索这一多学科领域。 流行的建筑游戏很适合教学生如何建造(加工)可以改变材料组装(结构)的方式,并导致机械性能和强度等性能的差异。游戏创造了更高水平的学生参与度和更刺激的学习环境,在课堂上接触到更广泛的学习者,解决了在美国制造业中培养多样化和高技能劳动力的挑战。这项研究将支持多方面的调查,以发现电磁场(EM)诱导的耐火陶瓷氧化物(如氧化锆)中的电荷传输机制,在有质动力的驱动下电磁场的相互作用将有选择地局部进行固相和液相合成实验,在微波辐射下的导电(金属)层上生长陶瓷膜。该研究小组将首先使用各种纳米级表征工具对原子结构进行静态非原位研究;缺陷结构;以及在(i)无外加场和(ii)不同强度,频率和极化的外加场下生长的薄膜的微观结构变化。接下来,动态原位研究将使用极化中子反射仪跟踪薄膜中的示踪离子,比较固定温度下不同场参数的扩散系数等传输特性。计算方法,包括分子动力学模拟将预测和比较每个实验情况下的扩散系数值。本研究首次将联合收割机实验与计算相结合,揭示了有质动力对电磁场作用下原子尺度输运现象的影响。最后,关于有质动力对陶瓷加工的影响的知识将被应用于使用逐层方法在低温下创建陶瓷增材制造的新平台。该研究任务将与教育和推广计划同时进行,其中包括一个综合的游戏/课堂方法来学习增材制造中的过程-结构-属性关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Operando Particle-Scale Characterization of Silicon Anode Degradation during Cycling by Ultrahigh-Resolution X-ray Microscopy and Computed Tomography
  • DOI:
    10.1021/acsaem.0c02823
  • 发表时间:
    2021-02-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Choi, Paul;Parimalam, Bharathy S.;Litster, Shawn
  • 通讯作者:
    Litster, Shawn
Engineering lithium-ion battery cathodes for high-voltage applications using electromagnetic excitation
  • DOI:
    10.1007/s10853-020-04871-5
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Laisuo Su;S. Jha;X. L. Phuah;Jianghong Xu;Nathan Nakamura;Haiyan Wang;J. Okasinski;B. Reeja‐Jayan
  • 通讯作者:
    Laisuo Su;S. Jha;X. L. Phuah;Jianghong Xu;Nathan Nakamura;Haiyan Wang;J. Okasinski;B. Reeja‐Jayan
Making the Case for Scaling Up Microwave Sintering of Ceramics
扩大陶瓷微波烧结规模的案例
  • DOI:
    10.1002/adem.202302065
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Aman, Bashu;Acharya, Sampada;Reeja‐Jayan, B.
  • 通讯作者:
    Reeja‐Jayan, B.
Parametric analysis to quantify process input influence on the printed densities of binder jetted alumina ceramics
  • DOI:
    10.1016/j.addma.2019.100864
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Jimenez, Edgar Mendoza;Ding, Daming;Beuth, Jack
  • 通讯作者:
    Beuth, Jack
Process development for the laser powder bed fusion of WC‐Ni Cermets using sintered‐agglomerated powder
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reeja Jayan其他文献

Reeja Jayan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reeja Jayan', 18)}}的其他基金

Workshop on Electromagnetic Effects in Materials Synthesis: Carnegie Mellon University, Pittsburgh, Pennsylvania; 5-6 June 2017
材料合成电磁效应研讨会:卡内基梅隆大学,宾夕法尼亚州匹兹堡;
  • 批准号:
    1719800
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
  • 批准号:
    567175-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Alliance Grants
Modelling the Population Genetics of Non-Equilibrium Molecular Evolution: Understanding The Forces that Shape The Genome
模拟非平衡分子进化的群体遗传学:了解塑造基因组的力量
  • 批准号:
    RGPIN-2020-06317
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanofluorescent Surfaces for Understanding Complex Cell Traction Forces
用于理解复杂细胞牵引力的机械荧光表面
  • 批准号:
    DE220100748
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the Mobilization of Frost Heave Uplift Forces on Pile Foundations
了解桩基础上冻胀举力的调动
  • 批准号:
    563911-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding and Controlling the Cellular Forces that Coordinate Epithelial Tissue Morphogenesis
了解和控制协调上皮组织形态发生的细胞力
  • 批准号:
    10473590
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Modelling the Population Genetics of Non-Equilibrium Molecular Evolution: Understanding The Forces that Shape The Genome
模拟非平衡分子进化的群体遗传学:了解塑造基因组的力量
  • 批准号:
    RGPIN-2020-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding and Controlling the Cellular Forces that Coordinate Epithelial Tissue Morphogenesis
了解和控制协调上皮组织形态发生的细胞力
  • 批准号:
    10674731
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Mechanoaging: Understanding the Mechanical Forces that Drive Cellular Aging
职业:机械老化:了解驱动细胞衰老的机械力
  • 批准号:
    2046093
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding and managing the relationship between soldier burden, mobility and susceptibility to enemy fire in the Canadian Armed Forces
了解和管理加拿大武装部队中士兵负担、机动性和对敌人火力的敏感性之间的关系
  • 批准号:
    567175-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Alliance Grants
Modelling the Population Genetics of Non-Equilibrium Molecular Evolution: Understanding The Forces that Shape The Genome
模拟非平衡分子进化的群体遗传学:了解塑造基因组的力量
  • 批准号:
    RGPIN-2020-06317
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了