CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation

职业:使用多项式逼近对基础设施系统进行高效预测建模

基本信息

  • 批准号:
    1752302
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Healthy and optimal operation of infrastructure systems will advance the health, prosperity and welfare of the society. It is however challenging to maintain the optimal condition given various uncertainties involved in these systems. Advances in computing and sensing technologies can potentially enable a paradigm shift in the management of infrastructure systems by realistically capturing the uncertainties involved. The main challenge is still the high computational cost that would entail, mainly due to large size of infrastructure networks. This Faculty Early Career Development Program (CAREER) award aims to enable the next generation of fast uncertainty quantification (UQ) methodologies that can significantly reduce simulation time and are particularly tailored for large infrastructure networks. This award will analyze the case of interdependent transportation-energy systems that involves the integration of electric vehicles. The project will also establish an integrated education and outreach plan to prepare the next generation of civil engineers with improved programming and computational skills. This is done through development of a new graduate-level course, mentoring of undergraduate researchers, partnership with educational physiologists to enhance educational plans, and also outreach to the broader civil engineering student population, K-12 students, and decision makers. The new methods will promote progress of science in UQ and infrastructure modeling, and together with the educational and outreach activities can collectively lead to improved infrastructure operations and promote the economic competitiveness of our society. This project will use stochastic simulations to realistically capture the complexities. The approaches will build upon and enrich current UQ machinery. These advanced UQ methods will aim to (1) intelligently identify the redundancies in the flow models of infrastructure systems, (2) use topology characteristics of these networks towards model reduction, (3) build an effective online training framework that use streaming sensor data, and (4) take advantage of the availability of flow models at various fidelity levels to produce multifidelity predictions. Specifically, the approaches include advanced compressive sampling methods in polynomial chaos expansion for effective removal of uncertainties related to network redundancies; a topology-based dimension reduction algorithm integrated with compressive sampling approach to exploit the topology information of infrastructure networks; a block-wise recursive least square approach to enable an effective online learning for polynomial surrogates with quantified modeling errors; and a multifidelity regression framework for building surrogates using results of simulations at various fidelity levels. If successful, these advances will collectively contribute to the transformation of infrastructure engineering where simulation-based data-intensive design suites that can assist decision makers will be increasingly used.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基础设施系统的健康和优化运行将促进社会的健康、繁荣和福祉。然而,考虑到这些系统中涉及的各种不确定性,保持最佳状态是具有挑战性的。计算和传感技术的进步可以通过实际捕捉所涉及的不确定性,潜在地实现基础设施系统管理的范式转变。主要的挑战仍然是高昂的计算成本,这主要是由于大规模的基础设施网络。该学院早期职业发展计划(Career)奖旨在实现下一代快速不确定性量化(UQ)方法,这些方法可以显着减少模拟时间,并特别为大型基础设施网络量身定制。该奖项将分析涉及电动汽车集成的相互依存交通能源系统的案例。该项目还将制定一项综合教育和外联计划,培养具有更好的编程和计算技能的下一代土木工程师。这是通过开发新的研究生课程、指导本科生研究人员、与教育生理学家合作加强教育计划、以及向更广泛的土木工程学生、K-12学生和决策者提供服务来实现的。这些新方法将促进昆士兰大学和基础设施建模的科学进步,并与教育和推广活动一起,共同改善基础设施运营,提高我们社会的经济竞争力。这个项目将使用随机模拟来真实地捕捉复杂性。这些方法将建立并丰富目前UQ的机制。这些先进的UQ方法将旨在(1)智能地识别基础设施系统流模型中的冗余,(2)利用这些网络的拓扑特征进行模型简化,(3)构建使用流传感器数据的有效在线训练框架,以及(4)利用各种保真度级别的流模型的可用性来产生多保真度预测。具体来说,这些方法包括在多项式混沌展开中采用先进的压缩采样方法,以有效消除与网络冗余相关的不确定性;基于拓扑的降维算法与压缩采样方法相结合,利用基础设施网络的拓扑信息。一种分块递归最小二乘方法,实现对具有量化建模误差的多项式代理的有效在线学习并利用不同保真度的模拟结果建立了一个多保真度回归框架。如果成功,这些进步将共同促进基础设施工程的转型,其中基于模拟的数据密集型设计套件将越来越多地用于帮助决策者。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model
  • DOI:
    10.1061/jenmdt.emeng-7060
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Tong Liu;H. Meidani
  • 通讯作者:
    Tong Liu;H. Meidani
IGANI: Iterative Generative Adversarial Networks for Imputation With Application to Traffic Data
  • DOI:
    10.1109/access.2021.3103456
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kazemi, Amir;Meidani, Hadi
  • 通讯作者:
    Meidani, Hadi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hadi Meidani其他文献

Multi-class traffic assignment using multi-view heterogeneous graph attention networks
基于多视图异构图注意力网络的多类别交通分配
  • DOI:
    10.1016/j.eswa.2025.128072
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Tong Liu;Hadi Meidani
  • 通讯作者:
    Hadi Meidani
Educational Technology Platforms and Shift in Pedagogical Approach to Support Computing Integration Into Two Sophomore Civil and Environmental Engineering Courses
教育技术平台和教学方法的转变,支持将计算集成到二年级土木与环境工程课程中
Physics-Informed Geometry-Aware Neural Operator
  • DOI:
    10.1016/j.cma.2024.117540
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Weiheng Zhong;Hadi Meidani
  • 通讯作者:
    Hadi Meidani
Physics-informed Mesh-independent Deep Compositional Operator Network
物理信息独立于网格的深度组合算子网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiheng Zhong;Hadi Meidani
  • 通讯作者:
    Hadi Meidani
Physics-informed discretization-independent deep compositional operator network
物理信息无关离散化的深度组合算子网络

Hadi Meidani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hadi Meidani', 18)}}的其他基金

I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
  • 批准号:
    2326446
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Jitney+: Redesign of a Legacy Mobility Service for Lower-income Communities in the Post-COVID Digital Age
SCC-CIVIC-PG 轨道 A:Jitney:为后 COVID 数字时代的低收入社区重新设计传统移动服务
  • 批准号:
    2044055
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Citizen Science EAGER: Quantifying Uncertainty in Crowd Response for Reliable Wind Hazard and Damage Assessment
公民科学 EAGER:量化人群反应的不确定性,以进行可靠的风灾和损害评估
  • 批准号:
    1645386
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Predictive and Prescriptive Analytics for Equitable and Efficient Service Provision in Smart Cities
预测性和规范性分析,以在智慧城市中提供公平和高效的服务
  • 批准号:
    DGECR-2022-00519
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Launch Supplement
Predictive and Prescriptive Analytics for Equitable and Efficient Service Provision in Smart Cities
预测性和规范性分析,以在智慧城市中提供公平和高效的服务
  • 批准号:
    RGPIN-2022-04950
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Behavioral and Predictive Analytics for Efficient Energy Consumption Management in Smart Grids
智能电网中高效能源消耗管理的行为和预测分析
  • 批准号:
    RGPIN-2018-06412
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Trusted Deep Learning For Multi-Domain Engineering Systems. The efficient design and operation of engineering systems require trusted predictive model
多领域工程系统的可信深度学习。
  • 批准号:
    2651000
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Ensemble Methods for Predictive Fluid Flow Simulations Subject to Uncertainty
用于预测不确定性流体流动模拟的有效集成方法
  • 批准号:
    2120413
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Behavioral and Predictive Analytics for Efficient Energy Consumption Management in Smart Grids
智能电网中高效能源消耗管理的行为和预测分析
  • 批准号:
    RGPIN-2018-06412
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
IMplementing Predictive Analytics towards efficient COPD Treatments (IMPACT)
实施预测分析以实现有效的慢性阻塞性肺病治疗 (IMPACT)
  • 批准号:
    441752
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Operating Grants
Efficient predictive density estimation
高效的预测密度估计
  • 批准号:
    RGPIN-2017-05435
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了