CAREER: Slopes of p-adic Modular Forms

职业:p-adic 模形式的斜率

基本信息

  • 批准号:
    1752703
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In number theory, it is natural to ask, for a fixed prime number p, whether the difference of two integers is divisible by p (or a power of p), in which case we say the two integers are congruent modulo p (or its power). The p-adic numbers are introduced in the 20th century to capture this congruence relation among integers: two integers are considered "close together" if their difference is divisible by a high power of p. This way, we can perform calculus on integers, but with a different definition of distance. This concept has been proved to be a powerful tool in number theory, both in practical applications to computational problems, and in theoretical applications such as the proof of Fermat's Last Theorem. In this project the PI will use p-adic calculus to study questions in number theory. In addition, the PI will organize Connecticut Summer Schools in Number Theory for advanced undergraduate students and beginning graduate students, to introduce them to topics of contemporary number theory (including the p-adic numbers).In more detail, the PI will study slopes of modular forms, that is the p-adic valuation of the eigenvalues of the Hecke operator at p on the space of modular forms, or equivalently, the p-adic valuation of the p-th coefficients of q-expansions of the eigenforms, with the goal of gaining new insight on the recent conjecture of Bergdall and Pollack, that will lead to a proof, by relating it to the p-adic local Langlands program. Success in proving this conjecture will lead to proofs of other open conjectures in the area, including Gouvea's conjecture on slope distribution, the Gouvea-Mazur conjecture, and an unpublished conjecture of Breuil-Buzzard-Emerton, as well as a partial result on the irreducibility of the Coleman-Mazur eigencurve.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数论中,对于一个固定的素数p,很自然地会问两个整数的差是否能被p(或p的幂)整除,在这种情况下,我们说这两个整数模p(或其幂)全等。p-adic数在世纪被引入,以捕捉整数之间的这种同余关系:如果两个整数的差可以被p的高次幂整除,则它们被认为是“靠近”的。这个概念已被证明是数论中的一个强大工具,无论是在计算问题的实际应用中,还是在理论应用中,如费马大定理的证明。 在这个项目中,PI将使用p-adic演算来研究数论中的问题。 此外,PI还将为高年级本科生和研究生举办康涅狄格州数论暑期学校,向他们介绍当代数论的主题(包括p-adic数)。更详细地说,PI将研究模形式的斜率,即模形式空间上Hecke算子在p处的特征值的p-adic赋值,或者等价地,本征形的q-展开式的p阶系数的p-adic赋值,目的是对最近的Bergdall和Pollack猜想获得新的见解,这将导致一个证明,通过将其与p-adic局部Langlands程序相关联。证明这个猜想的成功将导致该领域其他开放猜想的证明,包括Gouvea关于斜率分布的猜想,Gouvea-Mazur猜想,以及Breuil-Buzzard-Emerton未发表的猜想,以及关于科尔曼的不可约性的部分结果-该奖项反映了NSF的法定使命,并被认为是值得通过评估使用基金会的知识优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Xiao其他文献

Diagnostic Analysis of Pumping Tests Using Derivative of dlgs/dlgt with Case Study
使用 dlgs/dlgt 导数进行泵送测试的诊断分析及案例研究
  • DOI:
    10.1111/gwat.12175
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Liang Xiao;Yongxin Xu
  • 通讯作者:
    Yongxin Xu
ZrCu2P2の単結晶育成と磁気輸送特性評価
ZrCu2P2单晶生长及磁输运性能评价
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang Xiao;並木宏允;村瀬正恭;笹川崇男
  • 通讯作者:
    笹川崇男
Aerobic copper catalyzed alpha-oxyacylation of ketones with carboxylic acids
有氧铜催化酮与羧酸的 α-氧酰化
  • DOI:
    10.1039/c6qo00575f
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Huang Xin;Liang Xiao;Yuan Jun;Ni Zhangqin;Zhou Yifeng;Pan Yuanjiang
  • 通讯作者:
    Pan Yuanjiang
Hybrid Local and Nonlocal 3-D Attentive CNN for Hyperspectral Image Super-Resolution
用于高光谱图像超分辨率的混合局部和非局部 3D Attention CNN
  • DOI:
    10.1109/lgrs.2020.2997092
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Jingxiang Yang;Liang Xiao;Yong-Qiang Zhao;Jonathan Cheung-Wai Chan
  • 通讯作者:
    Jonathan Cheung-Wai Chan
Active Anti-jamming Solutions in CRNs
  • DOI:
    10.1007/978-3-319-24292-7_6
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang Xiao
  • 通讯作者:
    Liang Xiao

Liang Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Xiao', 18)}}的其他基金

Connecticut Summer School in Number Theory
康涅狄格数论暑期学校
  • 批准号:
    1608789
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Special Fibers of Modular Varieties
模块化品种特种纤维
  • 批准号:
    1502147
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Workshop: Towards a Local Proof of the Local Langlands Correspondence
研讨会:本地朗兰通讯的本地证明
  • 批准号:
    1207440
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CLIMA/Collaborative Research: Landslide Triggering of Thermally Sensitive Slopes due to Climate Change
CLIMA/合作研究:气候变化引发热敏斜坡滑坡
  • 批准号:
    2332069
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CLIMA/Collaborative Research: Landslide Triggering of Thermally Sensitive Slopes due to Climate Change
CLIMA/合作研究:气候变化引发热敏斜坡滑坡
  • 批准号:
    2332068
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A novel whole-process analysis method for fractured rock slopes
裂隙岩质边坡全过程分析新方法
  • 批准号:
    DP230100126
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
  • 批准号:
    2317854
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
  • 批准号:
    2317850
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
  • 批准号:
    2317852
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Quantification of energy cascade of internal gravity waves with varying spectral slopes
具有不同谱斜率的内部重力波能量级联的量化
  • 批准号:
    2241495
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
ERI: Identifying Seismically-induced Failure Mechanisms in Homogenous Rock Slopes
ERI:识别均质岩石边坡地震诱发的破坏机制
  • 批准号:
    2301519
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302284
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Innovative software for the mining industry that automatically designs optimally shaped slopes in any lithology within a suitably short runtime
适用于采矿业的创新软件,可在适当短的运行时间内自动设计任何岩性的最佳形状斜坡
  • 批准号:
    10078412
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了