Workshop: Towards a Local Proof of the Local Langlands Correspondence
研讨会:本地朗兰通讯的本地证明
基本信息
- 批准号:1207440
- 负责人:
- 金额:$ 2.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The organizers intend to hold a weekend workshop at the University of Illinois at Chicago, aimed at graduate students and young researchers, on the subject of the Local Langlands Correspondence. Recent work on the special fiber of the stable reduction of the Lubin-Tate tower by J. Weinstein using p-adic Hodge theory and p-divisible groups appears finally to make possible a purely local proof of the correspondence. Five experts will be invited to give talks on different pertinent subjects, which in total present the complete story behind the local correspondence: introductory material; C. Bushnell and P. Kutzko's type theory; M. Strauch's Jacquet-Langlands correspondence via the Lefschetz trace formula; Weinstein's aforementioned results on the stable reduction of the Lubin-Tate tower, and his joint work with M. Boyarchenko on the geometry of the special fiber. The workshop will be held on May 12-13, 2012. More information can be found at the conference website: http://math.uchicago.edu/~lxiao/workshop_site/Number theory is the branch of pure mathematics devoted to the study of whole numbers and their relations; a particular goal is often to understand whether a given algebraic equation has a whole number solution. The apparent simplicity of such problems belies their complexity, and a box of intricate tools has been collected over the past 400 years to attack them. Chief among them is a 'correspondence' proposed by R. Langlands in the 1960s which, once established, would allow number theorists to exploit methods from a wide range of other, seemingly unrelated mathematical fields. For example, the 300 year old problem 'Fermat's Last Theorem' was successfully tackled by A. Wiles in the 1990s by establishing part of Langlands' correspondence. Now, although the correspondence remains mysterious in general, it can be split into pieces which can be studied 'one prime at a time', called 'local correspondences': since prime numbers are the atoms of the whole numbers, a common approach in number theory is to attack a problem one prime at a time. These local correspondences can be investigated using geometry and are much better understood; the main intent of the organizers is to host a weekend workshop where graduate students and young researchers can learn about the latest developments in the field.
组织者打算在伊利诺伊大学芝加哥分校举办一个周末研讨会,针对研究生和年轻研究人员,主题是当地朗兰兹通信。最近由J.Weinstein利用p-进Hodge理论和p-可除群对Lubin-Tate塔的稳定约化的特殊纤维所做的工作似乎终于使这种对应的纯局部证明成为可能。将邀请五位专家就不同的相关主题进行演讲,这些主题总共介绍了当地通信背后的完整故事:介绍性材料;C.Bushnell和P.Kutzko的类型理论;M.Strauch通过Lefschetz迹公式的Jacquet-朗兰兹通信;Weinstein关于鲁宾-塔特塔稳定缩减的前述结果,以及他与M.Boyarchenko在特殊纤维几何方面的联合工作。研讨会将于2012年5月12-13日举行。更多信息可以在会议网站上找到:http://math.uchicago.edu/~lxiao/workshop_site/Number理论是纯数学的一个分支,致力于研究整数及其关系;一个特殊的目标通常是了解给定的代数方程是否有整数解。这些问题表面上的简单掩盖了它们的复杂性,在过去的400年里,人们收集了一盒复杂的工具来攻击它们。其中最主要的是R·朗兰兹在20世纪60年代提出的一项“通信”理论,该理论一旦建立,将允许数字理论家利用其他广泛的、看似无关的数学领域的方法。例如,A·威尔斯在20世纪90年代通过建立朗兰兹的部分通信,成功地解决了300年前的费马最后定理问题。现在,尽管这种对应关系在总体上仍然是个谜,但它可以被分成几个片断,可以一次研究一个素数,称为“局部对应”:因为素数是整个数的原子,所以数论中的一种常见方法是一次解决一个素数问题。这些当地通信可以用几何学进行调查,而且更容易被理解;组织者的主要目的是举办一个周末研讨会,让研究生和年轻的研究人员可以了解该领域的最新发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Xiao其他文献
Active Anti-jamming Solutions in CRNs
- DOI:
10.1007/978-3-319-24292-7_6 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Liang Xiao - 通讯作者:
Liang Xiao
Conserved noncoding sequences conserve biological networks and influence genome evolution
保守的非编码序列保护生物网络并影响基因组进化
- DOI:
10.1038/s41437-018-0055-4 - 发表时间:
2018-02 - 期刊:
- 影响因子:3.8
- 作者:
Jianbo Xie;Kecheng Qian;Jingna Si;Liang Xiao;Dong Ci;Deqiang Zhang - 通讯作者:
Deqiang Zhang
Deformable Registration of Chest Radiographs Using B-spline Based Method With Modified Residual Complexity
使用基于 B 样条的方法和改进的残差复杂度进行胸部 X 线照片的变形配准
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhikang Xiang;Min Li (李敏);Liang Xiao;Zhichao Lian;Zhihui Wei - 通讯作者:
Zhihui Wei
Research of the readout electronics for X-ray beam-position feedback system of SAPS
SAPS X射线束位置反馈系统读出电子器件的研究
- DOI:
10.1016/j.nima.2024.169304 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Li Yu;Qinglei Xiu;Xingchen Tian;Zhijia Sun;Yubin Zhao;Zhuang Jian;Hongbin Liu;Shaojia Chen;Weigang Yin;Lixin Zeng;Jiayi Ren;Hong Luo;Xiuku Wang;Liang Xiao;Haiyun Teng;Peixun Sen - 通讯作者:
Peixun Sen
Graph Convolutional Sparse Subspace Coclustering With Nonnegative Orthogonal Factorization for Large Hyperspectral Images
大型高光谱图像的非负正交分解的图卷积稀疏子空间共聚类
- DOI:
10.1109/tgrs.2021.3096320 - 发表时间:
2021-07 - 期刊:
- 影响因子:8.2
- 作者:
Nan Huang;Liang Xiao;Jianjun Liu;Jocelyn Chanussot - 通讯作者:
Jocelyn Chanussot
Liang Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Xiao', 18)}}的其他基金
CAREER: Slopes of p-adic Modular Forms
职业:p-adic 模形式的斜率
- 批准号:
1752703 - 财政年份:2018
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Connecticut Summer School in Number Theory
康涅狄格数论暑期学校
- 批准号:
1608789 - 财政年份:2016
- 资助金额:
$ 2.57万 - 项目类别:
Standard Grant
相似海外基金
Sustainable School Food: Engaging local authorities, schools and food system actors towards a school food Transformation in England
可持续学校食品:让地方当局、学校和食品系统参与者参与英格兰的学校食品转型
- 批准号:
ES/Y010256/1 - 财政年份:2024
- 资助金额:
$ 2.57万 - 项目类别:
Fellowship
Make My City Thrive - Helping Local Authorities & NGOs strategise and track progress towards Net Zero & SDG targets via a people-centred geospatial data web-tool
让我的城市繁荣 - 帮助地方当局
- 批准号:
10088464 - 财政年份:2023
- 资助金额:
$ 2.57万 - 项目类别:
Collaborative R&D
CAREER: SaTC: Towards Machine-learnable Enhancing Framework for Local Differential Privacy
职业:SaTC:面向本地差异隐私的机器学习增强框架
- 批准号:
2238680 - 财政年份:2023
- 资助金额:
$ 2.57万 - 项目类别:
Continuing Grant
Towards the utilization of genetic resources in the original countries by using local rice varieties collected more than half-century ago
利用半个多世纪前收集的当地水稻品种,实现原国家遗传资源的利用
- 批准号:
22H02368 - 财政年份:2022
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Towards a new generation of smart long-span bridges with auto-detection systems for nonlinear dynamic response and local deterioration under wind effect
新一代智能大跨度桥梁,具有非线性动力响应和风效应下局部劣化自动检测系统
- 批准号:
DGDND-2022-05116 - 财政年份:2022
- 资助金额:
$ 2.57万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Towards a new generation of smart long-span bridges with auto-detection systems for nonlinear dynamic response and local deterioration under wind effect
新一代智能大跨度桥梁,具有非线性动力响应和风效应下局部劣化自动检测系统
- 批准号:
RGPIN-2022-05116 - 财政年份:2022
- 资助金额:
$ 2.57万 - 项目类别:
Discovery Grants Program - Individual
Comparative study on social system and policy towards regeneration of agri-food system from local perspectives in post-Corona era
后电晕时代地方视角下农业食品体系再生的社会制度与政策比较研究
- 批准号:
21H04745 - 财政年份:2021
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elucidation of the artistic characteristics of local historical artifacts - Towards attribution and identification of 'style'
阐释地方历史文物的艺术特征——“风格”的归属与识别
- 批准号:
21K12541 - 财政年份:2021
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards predicting dynamics of tropical forest ecosystem based on changes in local resource environments and functional traits with tree ontogeny
基于当地资源环境和功能特征变化的树木个体发育预测热带森林生态系统动态
- 批准号:
21H02248 - 财政年份:2021
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Clarifying Conditions of Local Knowledge for Resilient Rehabilitations towards Disaster Risk Reduction Societies and its Realization
澄清当地知识对于减少灾害风险社会的复原力恢复的条件及其实现
- 批准号:
21J14552 - 财政年份:2021
- 资助金额:
$ 2.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows