Grid generation and multigrid schemes for spectral element methods in curved domains

弯曲域谱元法的网格生成和多重网格方案

基本信息

项目摘要

The objective of the project is to render the spectral element method competitive to classical lower order discretization methods for applications involving curved domains. To achieve this, we propose an integral approach that tackles the principal weaknesses of previous methods. The key components are as follows: 1) Stable and convergent methods for constructing nearly isometric patches starting from a linear triangulation of the surface.2) A moving mesh method for generating a boundary-conforming curved grid with built-in metric control.3) Spectral element multigrid techniques with near optimal complexity for implicit equations arising from discretization moving mesh and incompressible flow problems. A major challenge in 1) is to devise how boundary curves between surface vertices must be constructed in order to aid the creation of well-behaved patches while maintaining optimal accuracy. Based on this prerequisite, the patch construction itself will be optimized via suitable parameterization of sampling points. This approach allows for improving the metric without loss of precision. Once the surface grid is fixed, the moving mesh method serves to generate a well-behaved, boundary fitting spatial grid. In contrast to the elastic analogy recently advocated by Persson and Preraire, the moving mesh method has the advantage of direct metric control and higher flexibility because of the loose coupling between material elements. An open issue that will be addressed is the proper imposition of time-dependent boundary conditions, which drive the transition from the polyhedral toward a curved grid. In addition to this we aim at efficient implicit solution techniques for the spectral element formulation of the moving mesh method. This work will be fueled considerably by the development of structure-exploiting multigrid methods in the third part of the project. Finally these methods will be used as a building block for prototyping a spectral element flow solver that demonstrates the capability of the overall approach.
该项目的目标是使谱元素方法在涉及曲线域的应用中与经典的低阶离散化方法相竞争。为了实现这一点,我们提出了一种综合方法,解决了以前方法的主要缺点。主要内容如下:1)从曲面的线性三角剖分出发构造近似等距面片的稳定收敛方法;2)内建度量控制的移动网格生成边界协调曲面网格的移动网格方法;3)离散、移动网格和不可压缩流动问题隐式方程的谱单元多重网格技术。1)中的一个主要挑战是设计如何构建曲面顶点之间的边界曲线,以便在保持最佳精度的同时帮助创建行为良好的面片。在此前提下,通过对采样点进行适当的参数化处理,对面片结构本身进行优化。这种方法允许在不损失精度的情况下改进度量。一旦固定了曲面网格,移动网格方法就可以生成行为良好、边界适配的空间网格。与Persson和Preraire最近倡导的弹性类比相比,由于材料单元之间的松散耦合,移动网格法具有直接度量控制和更高的灵活性的优点。一个有待解决的问题是适当地施加依赖于时间的边界条件,这些条件推动了从多面体到曲线网格的过渡。此外,我们还针对移动网格法的谱元素公式,提出了有效的隐式求解技术。该项目第三部分开发的结构开发多重网格法将极大地推动这项工作。最后,这些方法将被用作原型的谱元流解算器的构建块,以展示整体方法的能力。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimizing triangular high-order surface meshes by energy-minimization
  • DOI:
    10.1007/s00366-017-0565-3
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Karsten Bock;J. Stiller
  • 通讯作者:
    Karsten Bock;J. Stiller
Energy-Minimizing Curve Fitting for High-Order Surface Mesh Generation
Generation of High-Order Polynomial Patches from Scattered Data
  • DOI:
    10.1007/978-3-319-01601-6_12
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karsten Bock;J. Stiller
  • 通讯作者:
    Karsten Bock;J. Stiller
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr.-Ing. Jörg Stiller其他文献

Privatdozent Dr.-Ing. Jörg Stiller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr.-Ing. Jörg Stiller', 18)}}的其他基金

Multi-level methods with high order in time and space for the numerical simulation of incompressible flows
不可压缩流数值模拟的时空高阶多层次方法
  • 批准号:
    409605784
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Balancing spatial and temporal accuracy in high fidelity simulations of incompressible flows
平衡不可压缩流的高保真度模拟中的空间和时间精度
  • 批准号:
    515986635
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Next-generation KYC banking verification via embedded smart keyboard
通过嵌入式智能键盘进行下一代 KYC 银行验证
  • 批准号:
    10100109
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Multi-component interventions to reducing unhealthy diets and physical inactivity among adolescents and youth in sub-Saharan Africa (Generation H)
采取多方干预措施减少撒哈拉以南非洲青少年的不健康饮食和缺乏身体活动(H 代)
  • 批准号:
    10106976
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
  • 批准号:
    10110559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
PhD in the Next Generation of Organic LEDs
下一代有机 LED 博士
  • 批准号:
    2904651
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
  • 批准号:
    EP/Y028287/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
  • 批准号:
    MR/Y019601/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了