CRII:OAC: Novel techniques for improving convergence and scalability of a Monte Carlo radiation solver for large-scale combustion simulations

CRII:OAC:用于提高大规模燃烧模拟蒙特卡罗辐射解算器的收敛性和可扩展性的新技术

基本信息

  • 批准号:
    1756005
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Combustion has been an important source of energy for ages and will continue to be so for considerable future. With the help of high-performance computing (HPC), predictive and accurate combustion simulations have a tremendous potential to emerge as a cost-effective and reliable design, assessment, and decision-making tool for practical systems (e.g., gas turbines, internal combustion engines, furnaces, etc.).  Detailed predictive modeling of combustion system requires, among other things, detailed and accurate modeling of thermal radiation. However, models for thermal radiation used in combustion simulations are usually over-simplified. The main bottlenecks in using detailed radiation model are its high computational cost and poor parallel efficiency in HPC.  This project explores several novel ideas to increase efficiency and robustness of a high-fidelity radiation solver in HPC combustion simulations, leading to the possibility of performing predictive and accurate simulations of practical combustion systems in a realistic time-frame.  The ability to perform such large-scale reliable predictive simulation is not only important in the design process of real combustion devices but also essential to further our understanding of fundamentals of combustion processes.  Considering the ever-increasing need for cleaner combustion devices, this predictive capability can potentially have a significant effect in academic research, as well as in energy and transportation industry. The project will also have an impact in popularizing computer programming in undergraduate students. Therefore, this research aligns with the NSF's mission to promote the progress of science and to advance the national health, prosperity, and welfare.  The radiation solver of choice in this project is a Monte-Carlo ray tracing-based (MCRT) solver. It is one of the most accurate radiation solver available, and typically outshines all other radiation solvers as the complexity of the problem increases.  To achieve improvements in efficiency and scalability of the MCRT solver in HPC simulations of large-scale combustion systems, this research brings together ideas from different disciplines of mathematics, statistical theory, and computer science and applies them to solve an engineering problem.  Considering the fact that the performance of an MCRT solver in HPC primarily depends on the underlying statistical algorithm and computational load-balancing, the current research is divided into three primary tasks. First, the project is developing new algorithms for improved convergence using special statistical distributions with low discrepancy. Second, novel strategies for MCRT load management, both in terms of computational time and memory utilization, are being explored to improve scalability of the solver in HPC simulations.  Third, the improved MCRT solver are planned to be created as a modular, platform-independent solver module with standardized interfaces so that it can be used with any combustion and/or CFD solver without significant sacrifice of its performance.  By enhancing efficiency and scalability of MCRT, this work aims to enable more accurate predictive HPC simulations of large-scale combustion systems in a realistic timescale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
燃烧一直是一个重要的能源的年龄,并将继续如此相当长的未来。 在高性能计算(HPC)的帮助下,预测性和准确的燃烧模拟具有巨大的潜力,可以成为实用系统(例如,燃气轮机、内燃机、熔炉等)。 燃烧系统的详细预测建模尤其需要对热辐射进行详细且准确的建模。 然而,用于燃烧模拟的热辐射模型通常过于简化。 在HPC中使用详细辐射模型的主要瓶颈是其高计算成本和低并行效率。本项目探索了几种新颖的想法来提高HPC燃烧模拟中高保真辐射求解器的效率和鲁棒性,从而有可能在现实的时间范围内对实际燃烧系统进行预测和准确的模拟。规模可靠的预测模拟不仅在真实的燃烧装置的设计过程中非常重要,而且对于加深我们对燃烧过程基本原理的理解也是必不可少的,考虑到对清洁燃烧装置的日益增长的需求,这种预测能力在学术研究以及能源和运输工业中具有潜在的重要影响。 该项目还将对在本科生中普及计算机编程产生影响。 因此,本研究符合美国国家科学基金会的使命,以促进科学的进步和促进国家的健康,繁荣和福利。在这个项目中的辐射求解器的选择是一个蒙特-卡罗射线跟踪为基础的(MCRT)求解器。 它是目前最精确的辐射求解器之一,随着问题复杂性的增加,它通常会超越所有其他辐射求解器。为了提高MCRT求解器在大规模燃烧系统HPC模拟中的效率和可扩展性,本研究汇集了数学,统计理论,考虑到高性能计算中MCRT求解器的性能主要取决于底层的统计算法和计算负载平衡,本文将MCRT求解器的研究分为三个主要任务。 首先,该项目正在开发新的算法,以改善收敛使用特殊的统计分布与低差异。 第二,MCRT负载管理的新策略,无论是在计算时间和内存利用率,正在探索,以提高求解器在HPC模拟的可扩展性。第三,改进的MCRT求解器计划被创建为一个模块,具有标准化接口的独立于平台的求解器模块,因此可用于任何燃烧和/或或CFD求解器,而不会显著牺牲其性能。通过提高MCRT的效率和可扩展性,这项工作的目的是使更准确的预测HPC模拟的大型,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响进行评估来支持审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AN EFFICIENT MONTE CARLO-BASED SOLVER FOR THERMAL RADIATION IN PARTICIPATING MEDIA
一种基于蒙特卡罗的高效参与介质热辐射求解器
Comparison of Spherical Harmonics Method and Discrete Ordinates Method for Radiative Transfer in a Turbulent Jet Flame
湍流射流火焰中辐射传输的球谐函数法与离散坐标法的比较
A quasi-Monte Carlo solver for thermal radiation in participating media
Comparison of Radiation Models for a Turbulent Piloted Methane/Air Jet Flame: A Frozen-Field Study
湍流先导甲烷/空气喷射火焰辐射模型的比较:冻结场研究
  • DOI:
    10.1115/ht2021-62417
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David, Chloe;Ge, Wenjun;Roy, Somesh P.;Modest, Michael F.;Sankaran, Ramanan
  • 通讯作者:
    Sankaran, Ramanan
A PHOTON MONTE CARLO SOLVER UTILIZING A LOW DISCREPANCY SEQUENCE FOR THERMAL RADIATION IN COMBUSTION SYSTEMS
利用低差异序列求解燃烧系统热辐射的光子蒙特卡洛求解器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Somesh Roy其他文献

Detailed radiation modeling of two flames relevant to fire simulation using Photon Monte Carlo — Line by Line radiation model
  • DOI:
    10.1016/j.jqsrt.2024.109177
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chandan Paul;Somesh Roy;Johannes Sailer;Fabian Brännström;Mohamed Mohsen Ahmed;Arnaud Trouvé;Hadi Bordbar;Simo Hostikka;Randall McDermott
  • 通讯作者:
    Randall McDermott

Somesh Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Somesh Roy', 18)}}的其他基金

CAREER: A scalable multiscale modeling framework to explore soot formation in reacting flows
职业:一个可扩展的多尺度建模框架,用于探索反应流中烟灰的形成
  • 批准号:
    2144290
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了