Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
基本信息
- 批准号:2403312
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graph Neural Networks (GNNs) have extended Deep Neural Networks’ success from independent data points to relational data points, such as observations collected on-site from environmental sensors (e.g., humidity, temperature, PM2.5, etc.) widely distributed in different spatial locations. While most existing works focus on proof-of-concept on relatively small, well-curated data, with offline settings, real-world scientific research, and applications need more capable GNN models, which can effectively learn from large-scale, real-time, geographically distributed (geo-distributed) and diversely different (heterogeneous) data. This project aims to chart a radically new cyberinfrastructure solution for training large-spatial GNNs to fill this gap. The success of this project will provide a cyberinfrastructure that overcomes the fundamental computational and communication bottlenecks for a broad range of domain science applications that rely on massive spatiotemporal prediction. The proposed algorithms and systems will be ideal for cultivating a deeper understanding of designing large machine-learning systems at a geo-distributed scale, teaching and training students and peers, and providing graduate and undergraduate students with new courses, research, and internship opportunities. This project aims to develop a comprehensive set of graph construction and partitioning methods, distributed learning algorithms, and cyberinfrastructure designs to support large-scale GNNs for real-world spatiotemporal data in geospatial scientific research and applications. The project will address significant research challenges, including (1) formulating spatiotemporal prediction within a geographically inspired graph deep learning framework, (2) enabling highly accurate, efficient, and cost-effective spatiotemporal prediction tasks across vast, geographically dispersed datasets, and (3) integrating spatial correlation, spatial heterogeneity, spatial computing parallelism, and geographic communication efficiency. The research is organized around several key research themes: (1) Creating a universal framework for constructing graphs from spatiotemporal data, determining spatial relationships, and filling in missing node attributes. (2) Developing a centralized spatiotemporal graph learning infrastructure that leverages multiple edge micro-datacenters for collaborative GNN model learning. (3) Establishing a decentralized spatiotemporal graph learning infrastructure that supports decentralized geographical multitask learning to address spatial heterogeneity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络(gnn)将深度神经网络的成功从独立数据点扩展到关系数据点,例如从广泛分布在不同空间位置的环境传感器(如湿度、温度、PM2.5等)现场收集的观测数据。虽然大多数现有工作都集中在相对较小的、精心策划的数据上进行概念验证,但在离线设置下,现实世界的科学研究和应用需要更强大的GNN模型,这些模型可以有效地从大规模、实时、地理分布(geo-distributed)和不同(异构)的数据中学习。该项目旨在为训练大空间gnn绘制一个全新的网络基础设施解决方案,以填补这一空白。该项目的成功将为依赖大规模时空预测的广泛领域科学应用提供一个克服基本计算和通信瓶颈的网络基础设施。所提出的算法和系统将是培养对在地理分布规模上设计大型机器学习系统的更深入理解、教学和培训学生和同行、为研究生和本科生提供新课程、研究和实习机会的理想选择。该项目旨在开发一套全面的图构建和划分方法、分布式学习算法和网络基础设施设计,以支持大规模gnn用于地理空间科学研究和应用中的真实时空数据。该项目将解决重大的研究挑战,包括:(1)在地理启发图深度学习框架内制定时空预测;(2)在庞大的地理分散数据集上实现高精度、高效和经济的时空预测任务;(3)整合空间相关性、空间异质性、空间计算并行性和地理通信效率。本研究主要围绕以下几个关键研究主题展开:(1)构建基于时空数据的图的通用框架,确定空间关系,填补缺失节点属性。(2)开发集中式时空图学习基础设施,利用多个边缘微数据中心进行协同GNN模型学习。(3)建立分散式时空图学习基础设施,支持分散式地理多任务学习,解决空间异质性问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Zhao其他文献
Novel imidazolium stationary phase for high-performance liquid chromatography.
用于高效液相色谱的新型咪唑固定相。
- DOI:
10.1016/j.chroma.2006.03.016 - 发表时间:
2006-05 - 期刊:
- 影响因子:0
- 作者:
Hongdeng Qiu;Shengxiang Jiang;Xia Liu*;Liang Zhao - 通讯作者:
Liang Zhao
Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach
使用基于范围的卷积神经网络进行大规模文本分类:一种深度学习方法
- DOI:
10.1109/access.2019.2955924 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Jiaying Wang;Yaxin Li;Jing Shan;Jinling Bao;Chuanyu Zong;Liang Zhao - 通讯作者:
Liang Zhao
Phenotypic effects of the nurse Thylacospermum caespitosum on dependent plant species along regional climate stress gradients
沿区域气候胁迫梯度,袋囊草保育员对依赖植物物种的表型影响
- DOI:
10.1111/oik.04512 - 发表时间:
2018-02 - 期刊:
- 影响因子:3.4
- 作者:
Xingpei Jiang;Richard Michalet;Shuyan Chen;Liang Zhao;Xiangtai Wang;Chenyue Wang;Lizhe An;Sa Xiao - 通讯作者:
Sa Xiao
A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel
矩形文丘里通道中气水两相流界面行为的可视化研究
- DOI:
10.1016/j.taml.2018.05.004 - 发表时间:
2018-09 - 期刊:
- 影响因子:3.4
- 作者:
Jiang Huang;Licheng Sun;Min Du;Zhengyu Mo;Liang Zhao - 通讯作者:
Liang Zhao
Simultaneous Photo‐Induced Magnetic and Dielectric Switching in an Iron(II)‐Based Spin‐Crossover Hofmann‐Type Metal‐Organic Framework
铁 (II) 中的同步光感应磁和介电开关 – 基于自旋 – 交叉霍夫曼 – 类型金属 – 有机框架
- DOI:
10.1002/anie.202208208 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nian-Tao Yao;Liang Zhao;Hui-Ying Sun;Cheng Yi;Ya-Hui Guan;Ya-Ming Li;Hiroki Oshio;Yin-Shan Meng;Tao Liu - 通讯作者:
Tao Liu
Liang Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Zhao', 18)}}的其他基金
CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
- 批准号:
2237435 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
- 批准号:
2324784 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
- 批准号:
2229138 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
- 批准号:
2110926 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
- 批准号:
2007976 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
- 批准号:
2113350 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors
CRII:III:使用社交传感器进行时空事件预测的可解释模型
- 批准号:
2103745 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
- 批准号:
1942594 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
- 批准号:
2106446 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
- 批准号:
2007716 - 财政年份:2020
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403398 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant