REU Site: Data Science in the Life Sciences, Environmental Science and Engineering
REU 网站:生命科学、环境科学与工程中的数据科学
基本信息
- 批准号:1757952
- 负责人:
- 金额:$ 34.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Research Experiences for Undergraduates (REU) in Data Science in the Life Sciences, Environmental Science and Engineering at Harvey Mudd College will provide nine undergraduate students per year from across the United States with opportunities to learn and apply data science concepts and tools to projects in the (i) biological and life sciences, (ii) environmental science and (iii) engineering and industrial applications. The students can apply to the REU program by ranking their favorite projects and recruitment will consider the applicant's skills and likelihood of having a successful experience as well as attracting students from traditionally underrepresented population groups, including women, African American and Hispanic/Latino students. The participating students will spend a total of 10 summer weeks at Harvey Mudd College (a member of the 5 Claremont Colleges that also include Claremont McKenna, Pomona, Pitzer and Scripps) and will work on their research projects with an experienced faculty member. They will be supported by state-of-the-art infrastructure such as computing facilities, libraries and laboratories. Students will also engage with their peers in a series of data science and professional skill workshops. Social events and educational field trips round out the program. Domain-specific research using data science methods and tools provide the students with important skills that prepare them for graduate studies and are useful for analyzing and solving problems in many disciplines and environments. The professional skill modules, including research ethics, time management and scholarly publishing, will complement and enrich the technical training and further equip students with competencies needed to become well-rounded, successful researchers. As computational capacity continues to expand at a rapid pace, there is an increased need for data science literacy among all scientists and engineers. Exposing the students to relevant concepts and tools in data science through this REU program is aimed at encouraging them to pursue careers in STEM-related fields and helping fill the persistent skill and labor gap in the U.S. by producing graduates who can have an impact on science and technology in the public and private sectors. The research projects that are part of the Harvey Mudd College REU program in Data Science in Life Sciences, Environmental Science and Engineering address new and open problems in different STEM disciplines using computational, mathematical and statistical methods and tools. The participating faculty mentors maintain active research activities in these tracks that offer data and hypothesis-rich environments for exploration and in-depth analysis. Example projects include the analysis of flow cytometry data, modeling of epidemiological and public health data such as surgical cataract coverage in developing countries, spatial data modeling and analysis for health risk assessments related to unconventional oil and gas development, testing hybrid mathematical models in atmospheric chemistry, and developing predictive models for sports coaching such as real-time coaching recommendations based on play-by-play basketball data. These projects involve high-dimensional data analytics and use different techniques to extract insights such as simulated data to validate mathematical models of effective health intervention coverage, multivariate spatial regression and Kriging, time series analysis of cloud-chamber data on air pollution models, and algebraic analysis of partially ranked data coupled with predictive techniques used in machine learning to predict player performance. In addition, students will also receive hands-on training in R, Python, MATLAB, become well versed in Linux command line processing, batch scripting, data movement, use of XSEDE supercomputers, and version control. They will be exposed to big data environments such as Hadoop and Spark, learn to use relational databases and write SQL and PostgreSQL queries, and work with ESRI's ArcGIS to model high-resolution spatial data. While the technical training and participation in real research processes is the main component of the REU program, necessary soft skills for successfully developing and running research programs are taught as well. This includes the group's participation in Harvey Mudd College's successful weekly Stauffer lecture and open lab series as well as a series of custom-tailored workshops involving additional personnel from the College's academic departments and the Writing Center.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究经验的本科生(REU)在生命科学,环境科学和工程在哈维穆德学院将提供每年9名本科生来自美国各地的机会,学习和应用数据科学的概念和工具的项目(i)生物和生命科学,(ii)环境科学和(iii)工程和工业应用。学生可以通过对他们最喜欢的项目进行排名来申请REU计划,招聘将考虑申请人的技能和获得成功经验的可能性,以及吸引来自传统上代表性不足的人口群体的学生,包括女性,非洲裔美国人和西班牙裔/拉丁裔学生。参与的学生将在Harvey Mudd College(5所克莱蒙学院的成员,其中还包括克莱蒙麦肯纳,波莫纳,皮泽尔和斯克里普斯)度过总共10个夏季周,并将与经验丰富的教师一起开展他们的研究项目。它们将得到计算机设施、图书馆和实验室等最先进的基础设施的支持。学生还将与同龄人一起参加一系列数据科学和专业技能研讨会。社会活动和教育实地考察圆了计划。使用数据科学方法和工具的特定领域研究为学生提供了重要的技能,为他们的研究生学习做好准备,并有助于分析和解决许多学科和环境中的问题。专业技能模块,包括研究道德,时间管理和学术出版,将补充和丰富技术培训,并进一步使学生具备成为全面,成功的研究人员所需的能力。随着计算能力继续快速扩展,所有科学家和工程师都越来越需要数据科学素养。通过这个REU计划,让学生接触数据科学的相关概念和工具,旨在鼓励他们从事STEM相关领域的职业,并通过培养能够对公共和私营部门的科学和技术产生影响的毕业生,帮助填补美国持续存在的技能和劳动力缺口。研究项目是Harvey Mudd College REU生命科学,环境科学和工程数据科学计划的一部分,使用计算,数学和统计方法和工具解决不同STEM学科的新问题和开放问题。参与的教师导师在这些轨道上保持积极的研究活动,为探索和深入分析提供数据和假设丰富的环境。实例项目包括流式细胞术数据分析、流行病学和公共卫生数据建模(如发展中国家白内障手术覆盖率)、与非常规油气开发相关的健康风险评估空间数据建模和分析、大气化学混合数学模型测试、以及开发用于体育教练的预测模型,例如基于逐场比赛篮球数据的实时教练建议。这些项目涉及高维数据分析,并使用不同的技术来提取见解,例如模拟数据来验证有效健康干预覆盖率的数学模型,多元空间回归和克里格,空气污染模型云室数据的时间序列分析,以及部分排名数据的代数分析,再加上机器学习中用于预测球员表现的预测技术。此外,学生还将接受R,Python,MATLAB的实践培训,精通Linux命令行处理,批处理脚本,数据移动,使用XSEDE超级计算机和版本控制。他们将接触Hadoop和Spark等大数据环境,学习使用关系数据库并编写SQL和PostgreSQL查询,并与ESRI的ArcGIS合作,为高分辨率空间数据建模。虽然技术培训和参与真实的研究过程是REU计划的主要组成部分,但也教授成功开发和运行研究计划所需的软技能。这包括该组织参加哈维马德学院成功的每周Stauffer讲座和开放实验室系列,以及一系列定制研讨会,涉及学院学术部门和写作中心的额外人员。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisette de Pillis其他文献
A Role of Effector CD $$8^{+}$$ T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model
- DOI:
10.1007/s11538-024-01323-y - 发表时间:
2024-06-17 - 期刊:
- 影响因子:2.200
- 作者:
Khaphetsi Joseph Mahasa;Rachid Ouifki;Lisette de Pillis;Amina Eladdadi - 通讯作者:
Amina Eladdadi
Lisette de Pillis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisette de Pillis', 18)}}的其他基金
Western (U.S.) Workshop on Mathematical Problems from Industry; Summer 2009, Claremont, CA
西方(美国)工业数学问题研讨会;
- 批准号:
0909213 - 财政年份:2009
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
Mathematical Modeling of the Chemotherapy, Immunotherapy and Vaccine Therapy of Cancer
癌症化疗、免疫治疗和疫苗治疗的数学模型
- 批准号:
0414011 - 财政年份:2004
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
RUI: Low Mach Number Flows in an Infinite Domain
RUI:无限域中的低马赫数流
- 批准号:
9321728 - 财政年份:1994
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
- 批准号:
2349233 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
- 批准号:
2348547 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
- 批准号:
2349534 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Multidisciplinary Graph Data Analytics
REU 网站:多学科图数据分析
- 批准号:
2349486 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Research Experience for Undergraduates: Interdisciplinary Cutting-Edge Research through the Analysis of Global Data
REU 网站:本科生研究经验:通过全球数据分析进行跨学科前沿研究
- 批准号:
2349621 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
Continuing Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU SITE: From Formal Computer Science Education to Real World Data Science Research to Policy Decision Making
REU 站点:从正规计算机科学教育到现实世界数据科学研究再到政策决策
- 批准号:
2244271 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
- 批准号:
2243981 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
- 批准号:
2243878 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant