REU Site: Multidisciplinary Graph Data Analytics

REU 网站:多学科图数据分析

基本信息

项目摘要

The Research Experience for Undergraduates (REU) site: Multidisciplinary Graph Data Analytics at Georgia State University is an eight-week summer research program to provide undergraduates a research-intensive training and offer valuable opportunities to actively engage in multidisciplinary data analytics projects. This award will recruit ten undergraduate students each summer from colleges with limited research capabilities and high concentrations of underrepresented minority populations such as African Americans and Hispanics in Georgia and neighboring states. The goals of the project include (1) providing a quality research experience for undergraduates, (2) increasing participation of female and under-represented minorities in data analytics (particularly graph data analytics), which will contribute to the broadening of diversity in computing fields, and (3) preparing students to pursue graduate studies and professional careers in research-oriented positions. The participants will engage in research projects in graph data analytics with practical applications in social networks, bioinformatics, and business analytics under faculty mentors' mentorship and guidance. Additionally, students will gain insights into industry research practices through field trips and guest speaker sessions. Upon completion of the program, participants are expected to acquire a robust skill set essential for successful careers in science and technology, particularly in the ever-growing field of data science—an area projected to remain pivotal in the future professional landscape.This REU site aims to engage undergraduates in learning experiences that increase their interest and ability to conduct basic research, especially on graph data analytics. Students will learn how to develop and use different graph machine learning (e.g., graph neural networks), graph data mining (e.g., graph clustering), and statistical methods (e.g., regression) while working on real-world projects with applications in social networks, bioinformatics, and business analytics. The research projects will fall into the following categories: 1) Graph Neural Networks with Graph Compressing, 2) Influence Maximization on Business Networks, 3) Social Network Analysis using Knowledge Graphs, and 4) Biomedical Data Analysis using Heterogeneous Graphs. Students will further learn about the ethical challenges inherent in data analytics, from privacy issues to problems emerging from machine learning applied to biased datasets via weekly seminars. Through regular meetings, where diverse problems and experiences are shared and knowledge is exchanged, students will not only delve into their projects but also gain exposure to other ongoing projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本科生的研究经验(REU)网站:格鲁吉亚州立大学的多学科图数据分析是一个为期八周的夏季研究计划,为本科生提供研究密集型培训,并提供积极参与多学科数据分析项目的宝贵机会。该奖项每年夏天将从研究能力有限、少数民族人口高度集中的大学招募10名本科生,如格鲁吉亚和邻国的非洲裔美国人和西班牙裔美国人。该项目的目标包括(1)为本科生提供高质量的研究经验,(2)增加女性和代表性不足的少数民族在数据分析(特别是图形数据分析)中的参与,这将有助于扩大计算领域的多样性,以及(3)为学生在研究型职位上进行研究生学习和职业生涯做好准备。参与者将在教师导师的指导和指导下从事图形数据分析的研究项目,并在社交网络,生物信息学和商业分析中进行实际应用。 此外,学生将通过实地考察和演讲嘉宾会议获得行业研究实践的见解。在该计划完成后,参与者预计将获得一个强大的技能,在科学和技术的成功职业生涯必不可少的,特别是在不断增长的数据科学领域,预计在未来的专业景观仍然是关键的领域。这个REU网站旨在吸引本科生的学习经验,提高他们的兴趣和能力,进行基础研究,特别是在图形数据分析。学生将学习如何开发和使用不同的图形机器学习(例如,图形神经网络),图形数据挖掘(例如,图聚类),和统计方法(例如,回归),同时致力于社交网络、生物信息学和商业分析中的实际项目。研究项目将分为以下几类:1)图形神经网络与图形压缩,2)商业网络的影响最大化,3)使用知识图的社会网络分析,以及4)使用异构图的生物医学数据分析。学生将进一步了解数据分析中固有的道德挑战,从隐私问题到通过每周研讨会应用于有偏见的数据集的机器学习中出现的问题。通过定期会议,学生们不仅可以深入研究他们的项目,还可以接触到其他正在进行的项目。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Esra Akbas其他文献

Evaluation of MoCA Scale Ratings with Cognitive Level Correlation in Mild Cognitive Disorders
MoCA 量表评级与轻度认知障碍认知水平相关性的评估
  • DOI:
    10.5152/imj.2017.46704
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    H. Gulen;A. Yıldırım;U. Emre;Y. Karagoz;Esra Akbas
  • 通讯作者:
    Esra Akbas
The Impact of Social Media on Disaster Volunteerism: Evidence from Hurricane Harvey
社交媒体对灾难志愿服务的影响:来自飓风哈维的证据
Effects of COVID-19 on individuals in Opioid Addiction Recovery
COVID-19 对阿片类药物成瘾康复个体的影响
Computing the Braid Monodromy of Completely Reducible n-gonal Curves
计算完全可约n边形曲线的辫状单向性
Index Based Efficient Algorithms For Closest Community Search

Esra Akbas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Esra Akbas', 18)}}的其他基金

CRII: III: Structure-aware Graph Compressing: From Algorithms to Applications
CRII:III:结构感知图压缩:从算法到应用程序
  • 批准号:
    2308206
  • 财政年份:
    2022
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
CRII: III: Structure-aware Graph Compressing: From Algorithms to Applications
CRII:III:结构感知图压缩:从算法到应用程序
  • 批准号:
    2104720
  • 财政年份:
    2021
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Multidisciplinary Approaches for Overcoming Water Resources and Sustainable Engineering Challenges in Appalachian Regions
REU 网站:克服阿巴拉契亚地区水资源和可持续工程挑战的多学科方法
  • 批准号:
    2348814
  • 财政年份:
    2024
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Physics at Purdue University
REU 站点:普渡大学多学科物理学
  • 批准号:
    2244297
  • 财政年份:
    2023
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Continuing Grant
REU Site: Multidisciplinary Underground Science at the Sanford Underground Research Facility
REU 站点:桑福德地下研究设施的多学科地下科学
  • 批准号:
    2150517
  • 财政年份:
    2022
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Continuing Grant
REU Site: A Multidisciplinary Research Experience in Engineered Bioactive Interfaces and Devices
REU 网站:工程生物活性界面和设备的多学科研究经验
  • 批准号:
    2150337
  • 财政年份:
    2022
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Advancing high-performance computing opportunities in undergraduate research at UW-Eau Claire to meet challenges of multidisciplinary computational science
REU 网站:在威斯康星大学欧克莱尔分校本科生研究中推进高性能计算机会,应对多学科计算科学的挑战
  • 批准号:
    2150191
  • 财政年份:
    2022
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Chemistry Research: Empowering Scientists to Improve Society
REU 网站:多学科化学研究:赋权科学家改善社会
  • 批准号:
    2050846
  • 财政年份:
    2021
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Research & Training in Multidisciplinary field of Regenerative Sciences for Undergraduates
REU 网站:研究
  • 批准号:
    2050038
  • 财政年份:
    2021
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Research Experience in Advance Manufacturing for Undergraduates
REU 网站:本科生先进制造的多学科研究经验
  • 批准号:
    2051066
  • 财政年份:
    2021
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Research for Undergraduates in Nanomaterials for Energy and Biological Applications
REU 网站:能源和生物应用纳米材料本科生多学科研究
  • 批准号:
    1950672
  • 财政年份:
    2020
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
REU Site: Deep Learning Driven Cybersecurity Research in a Multidisciplinary Environment
REU 网站:多学科环境中深度学习驱动的网络安全研究
  • 批准号:
    1950704
  • 财政年份:
    2020
  • 资助金额:
    $ 37.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了