Electronic and Thermoelectric Properties of High Mobility Few-Layer Phospherene Devices

高迁移率少层光球烯器件的电子和热电性能

基本信息

  • 批准号:
    1758156
  • 负责人:
  • 金额:
    $ 6.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The advancement of next generation electronics requires breakthroughs in materials, functionalities and even device operation paradigms, in order to address challenges such as thermal management and charge tunneling as devices continue to be miniaturized. Graphene has recently generated a great deal of excitement as a one-atom thick conductor with exceptional electronic properties with especially high mobility electrons, with the 2010 Physics Nobel prize being awarded for groundbreaking work on this material. However, as graphene is not a semiconductor, digital electronics realizations such as those forming the basis of computing devices are difficult. Phosphorene, a single or few layers of black phosphorus, a stable layered phosphorus allotrope, has highly mobile electrons like graphene but is also a semiconductor like silicon. This potentially enables it to form the basis for digital electronics and logic gates. However, many of its basic properties are unknown and, since phosphorus reacts with air, device passivation is important. The proposed research aims to investigate device passivation, as well the fundamental properties of phosphorene, with the goal of realizing novel, high performance electronic and optoelectronic devices. The program will integrate the recruitment and education of undergraduate and graduate students, including those from under-represented groups, via semiconductor and materials research, and help to maintain the much-need pipeline of scientists and engineers for American technological sector. By outreaching to local high school students and teachers, this program will also positively impact the ethnically diverse local communities in Inland Empire.The goal of this proposal is to investigate electronic, thermal and thermoelectric properties of mono- or few-layer black phosphorus, or phosphorene, and explore novel devices based on this new material. Phosphorene has emerged as a promising material for electronics and optical applications, due to its many desirable properties such as very high bulk mobility, in-plane anisotropy, expected large thermoelectric power and a direct band gap that is tunable by strain or thickness over a large range. However, basic properties such as the mobility bottleneck and major scattering mechanisms are not known and device passivation remains important. Our approaches include (1). fabrication of stable, high mobility devices by encapsulation, and optimization via control of substrate, protection layers, and Schottky barrier; (2). tuning device properties via ionic liquid gating and isotropic or anisotropic strain, (3). thermopower measurements of anisotropic Seebeck coefficients and Nernst power; (4). spatially modulated devices such as pn junctions for electronics, electroluminescence and photovoltaic applications, and twisted phosphorene bilayers for periodic band gap modulation. This program builds on the PI's and co-PI's strong track records on graphene and carbon nanotubes, and exciting preliminary data such as unprecedented mobility of 4000 cm2/Vs and observation of quantum oscillations in phosphorene. Outcomes of this research include elucidation of the fundamental material properties of single- and few-layer phosphorene, and providing the much-needed route for stable, high mobility devices, while exploration of anisotropic thermopower, pn junctions and twisted bilayers will open the door for novel electronic, thermoelectric and optoelectronic applications.
下一代电子技术的进步需要在材料、功能甚至设备操作范式方面取得突破,以应对随着设备不断小型化,热管理和电荷隧道等挑战。石墨烯作为一种单原子厚度的导体,具有特殊的电子特性,特别是高迁移率的电子,最近引起了极大的兴奋,2010年诺贝尔物理学奖被授予了这种材料的开创性工作。然而,由于石墨烯不是半导体,形成计算设备基础的数字电子实现是困难的。磷烯是一种单层或多层的黑磷,是一种稳定的层状磷同素异形体,它像石墨烯一样具有高度可移动的电子,但也像硅一样是一种半导体。这可能使它成为数字电子学和逻辑门的基础。然而,它的许多基本性质是未知的,因为磷与空气反应,设备钝化是重要的。本研究旨在研究器件的钝化以及磷烯的基本性质,以实现新型、高性能的电子和光电子器件。该计划将通过半导体和材料研究整合本科生和研究生的招聘和教育,包括那些来自代表性不足的群体的学生,并帮助维持美国技术部门急需的科学家和工程师的管道。通过向当地高中学生和教师推广,该项目还将对内陆帝国地区的多种族社区产生积极影响。本提案的目标是研究单层或多层黑磷或磷烯的电子,热学和热电性质,并探索基于这种新材料的新型器件。由于其许多理想的特性,如非常高的体迁移率、面内各向异性、预期的大热电功率和可在大范围内通过应变或厚度调节的直接带隙,磷烯已成为电子和光学应用的有前途的材料。然而,诸如迁移瓶颈和主要散射机制等基本性质尚不清楚,器件钝化仍然很重要。我们的方法包括:(1)通过封装制造稳定、高迁移率的器件,并通过控制衬底、保护层和肖特基势垒进行优化;(2)通过离子液体门控和各向同性或各向异性应变调谐器件特性;(3)各向异性塞贝克系数和能司特功率的热功率测量;(4).空间调制器件,如用于电子、电致发光和光伏应用的pn结,以及用于周期性带隙调制的扭曲磷双分子层。该项目建立在PI和co-PI在石墨烯和碳纳米管方面的良好记录之上,以及令人兴奋的初步数据,如前所未有的4000 cm2/ v的迁移率和对磷烯量子振荡的观察。本研究的成果包括阐明单层和多层磷烯的基本材料性质,为稳定的高迁移率器件提供急需的途径,而探索各向异性热电、pn结和扭曲双层将为新的电子、热电和光电子应用打开大门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Bockrath其他文献

Illuminating behaviour
启发式行为
  • DOI:
    10.1038/426511a
  • 发表时间:
    2003-12-04
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Marc Bockrath
  • 通讯作者:
    Marc Bockrath
Show of strength
力量的展示
  • DOI:
    10.1038/nnano.2009.288
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Marc Bockrath
  • 通讯作者:
    Marc Bockrath
Illuminating behaviour
启发式行为
  • DOI:
    10.1038/426511a
  • 发表时间:
    2003-12-04
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Marc Bockrath
  • 通讯作者:
    Marc Bockrath
Electron liquids and solids in one dimension
一维电子液体和固体
  • DOI:
    10.1038/nature08918
  • 发表时间:
    2010-03-10
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Vikram V. Deshpande;Marc Bockrath;Leonid I. Glazman;Amir Yacoby
  • 通讯作者:
    Amir Yacoby
Unraveling the Role of Boron Dimers in the Electrical Anisotropy and Superconductivity in Boron-doped diamond
揭示硼二聚体在掺硼金刚石电各向异性和超导性中的作用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Michał Sobaszek;Soonho Kwon;Tomasz Klimczuk;P. Michałowski;Jacek Ryl;Bogdan Rutkowski;Dongying Wang;Xinwei Li;Marc Bockrath;R. Bogdanowicz;William A. Goddard
  • 通讯作者:
    William A. Goddard

Marc Bockrath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Bockrath', 18)}}的其他基金

Collaborative Research: High-dimensional quantum states in two-dimensional material quantum dots
合作研究:二维材料量子点中的高维量子态
  • 批准号:
    2105028
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Standard Grant
Twistronic and spatial modulation of spin orbit coupling for spintronic and topological devices
自旋电子和拓扑器件的自旋轨道耦合的双电子和空间调制
  • 批准号:
    2004801
  • 财政年份:
    2020
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Continuing Grant
Electronic and Thermoelectric Properties of High Mobility Few-Layer Phospherene Devices
高迁移率少层光球烯器件的电子和热电性能
  • 批准号:
    1509958
  • 财政年份:
    2015
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Standard Grant
Correlated Electronic Phenomena in Ultra-Clean Carbon Nanotubes and Bilayer Graphene Devices
超洁净碳纳米管和双层石墨烯器件中的相关电子现象
  • 批准号:
    1106358
  • 财政年份:
    2011
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Continuing Grant

相似海外基金

Experimental investigation on contribution of local heat flow and local material properties to thermoelectric performance in a macroscopic scale
宏观尺度局部热流和局部材料特性对热电性能贡献的实验研究
  • 批准号:
    23H01854
  • 财政年份:
    2023
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Thermoelectric properties at precisely controlled van der Waals interfaces
精确控制范德华界面的热电特性
  • 批准号:
    23H00259
  • 财政年份:
    2023
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elucidation of thermoelectric properties and performance improvement of nitride semiconductors for utilization of waste heat from semiconductor devices
阐明氮化物半导体的热电特性和性能改进,以利用半导体器件的废热
  • 批准号:
    23H01454
  • 财政年份:
    2023
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of High thermoelectric properties by displacement modulation relaxation of multi-layered misfit cobaltate oxide
通过多层错配氧化钴的位移调制弛豫创造高热电性能
  • 批准号:
    23K04903
  • 财政年份:
    2023
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Solution Processed 2D Tellurene with Outstanding Thermoelectric Properties
LEAPS-MPS:具有出色热电性能的溶液处理二维碲烯
  • 批准号:
    2213441
  • 财政年份:
    2022
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Standard Grant
Understanding structural, optical, and thermoelectric properties of complex metal halides for energy applications
了解能源应用中复杂金属卤化物的结构、光学和热电特性
  • 批准号:
    2725089
  • 财政年份:
    2022
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Studentship
Spectroscopic mapping of local electronic/thermoelectric properties
局部电子/热电特性的光谱映射
  • 批准号:
    2606660
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Studentship
Development of emergent thermal and thermoelectric properties in topological magnets
拓扑磁体中涌现的热和热电特性的发展
  • 批准号:
    21K13874
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unusual Thermoelectric properties in Topological Insulators with various Device designs
各种器件设计的拓扑绝缘体的异常热电特性
  • 批准号:
    21H01024
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of material design and tailoring physical properties for carbon nanotube yarns for high-efficiency thermoelectric generator
用于高效热电发电机的碳纳米管纱线的材料设计和定制物理性能的开发
  • 批准号:
    21H01371
  • 财政年份:
    2021
  • 资助金额:
    $ 6.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了