NSF/FDA SIR: Assurance of Cellular Function in High-Shear Three-Dimensional Bioprinting

NSF/FDA SIR:高剪切三维生物打印中细胞功能的保证

基本信息

  • 批准号:
    1758210
  • 负责人:
  • 金额:
    $ 9.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

Despite rigorous testing of drugs and medical devices in animals, many products fail in early stage human testing. These failed products have the potential to result in adverse health outcomes for trial participants and billions in lost capital each year. The manufacturing of artificial human tissue samples is a potential way of predicting human response to new, regulated products. These manufacturing processes are being designed to use special bioprinters to print human cells in three dimensional (3D) constructs. The goal is to use these synthetic tissues as another screening step to reveal potential hazards of new medical products before they enter human testing. The eventual goal would be that only the safest, most effective products reach human testing. The 3D printing process, however, exerts mechanical forces on the cells and leads to cellular dysfunction or death. This project is a collaboration between researchers in biomaterials at the University of Kentucky and cellular biomechanics and bioprinting experts at the United States Food & Drug Administration to determine how 3D printing procedures may change the way cells behave. Changes in cellular physiology and behavior can, in turn, affect the usefulness of the artificial tissues for medical product screening. As a result of this work, researchers will be able to better predict if printed cells will return to their natural function and how long after being printed this function will be restored. With this new information, researchers will be able to develop and evaluate new methods to preserve normal cellular function during tissue manufacturing. During this project, the research team will also develop publicly available, educational tools that describe the science and engineering concepts underlying three dimensional bioprinting.This project seeks to determine how 3D bioprinting affects cellular physiology, in particular cellular membrane transport. It is known that the high shear environment of the bioprinting nozzle impacts cellular response; however, the precise changes in the cells and whether normal function can be recovered within a range of bioprinting parameters has not been assessed. This gap in knowledge makes it difficult to determine if a 3D printed tissue actually will replicate normal (or defined pathological) physiology -- a key feature if such bioprinted tissue structures are going to be used for pre-clinical assessment of drugs or medical devices. The scientific objectives of this proposal are to: 1) quantify the magnitude and timescale of unnatural transport across the cell membrane, including multiple forms of active and passive transport, following simulated extrusion bioprinting; and 2) quantify how cellular coatings, which are hypothesized to protect cells from mechanical damage, affect the extrusion-based alterations in cellular membrane transport. In addition to measurements of membrane transport, appropriate assays for basic cell function and viability will also be conducted for each cell type. Experiments will be conducted using five cell lines (HepG2 - hepatic; Caco2 - intestinal; H9C2 - myocardial; A549 - human lung carcinoma; and mesenchymal stem cells), each of which is of current interest in the biomanufacturing arena. This collaboration will result in mutual education, with the post-doctoral fellow becoming trained in the area of regulatory affairs and the PI educating CDRH (Center for Devices and Radiologic Health) team members at the FDA on emerging technology for encapsulated cell systems and devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在动物身上进行了严格的药物和医疗设备测试,但许多产品在早期的人体测试中失败了。这些失败的产品有可能给试验参与者带来不利的健康结果,并每年造成数十亿美元的资金损失。人造人体组织样品的制造是预测人类对新的、受管制产品反应的一种潜在方法。这些制造工艺被设计为使用特殊的生物打印机来打印三维(3D)结构的人体细胞。目标是利用这些合成组织作为另一个筛选步骤,在新医疗产品进入人体试验之前揭示其潜在危害。最终的目标是只有最安全、最有效的产品才能进行人体测试。然而,3D打印过程会对细胞施加机械力,导致细胞功能障碍或死亡。这个项目是肯塔基大学生物材料研究人员和美国食品和药物管理局细胞生物力学和生物打印专家之间的合作,旨在确定3D打印过程如何改变细胞的行为方式。细胞生理和行为的变化反过来会影响用于医疗产品筛选的人造组织的有用性。由于这项工作,研究人员将能够更好地预测打印细胞是否会恢复其自然功能,以及打印后这种功能将恢复多长时间。有了这些新信息,研究人员将能够开发和评估在组织制造过程中保持正常细胞功能的新方法。在这个项目中,研究团队还将开发公开可用的教育工具,描述三维生物打印背后的科学和工程概念。该项目旨在确定3D生物打印如何影响细胞生理学,特别是细胞膜运输。众所周知,生物打印喷嘴的高剪切环境会影响细胞反应;然而,细胞的精确变化以及是否可以在生物打印参数范围内恢复正常功能尚未得到评估。这种知识上的差距使得很难确定3D打印组织是否真的会复制正常(或定义的病理)生理学——如果这种生物打印组织结构将用于药物或医疗设备的临床前评估,这是一个关键特征。本提案的科学目标是:1)量化模拟挤压生物打印后跨细胞膜的非自然运输的大小和时间尺度,包括多种形式的主动和被动运输;2)量化细胞涂层(假设可以保护细胞免受机械损伤)如何影响细胞膜运输中基于挤压的改变。除了膜运输的测量外,还将对每种细胞类型进行基本细胞功能和活力的适当测定。实验将使用五种细胞系(HepG2 -肝细胞、caco -肠细胞、H9C2 -心肌细胞、A549 -人肺癌细胞和间充质干细胞)进行,每一种细胞系目前都是生物制造领域的热门。这种合作将导致相互教育,博士后研究员将在监管事务领域接受培训,PI将向FDA的CDRH(设备和放射健康中心)团队成员传授封装细胞系统和设备的新兴技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brad Berron其他文献

Brad Berron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brad Berron', 18)}}的其他基金

NSF/FDA/SIR: Evaluating cellular integrity as a function of bioprinter nozzle geometry
NSF/FDA/SIR:根据生物打印机喷嘴几何形状评估细胞完整性
  • 批准号:
    1935836
  • 财政年份:
    2019
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
CAREER: Artificial Cell Membranes for Ultra-Pure, High Throughput Cellular Isolation
职业:用于超纯、高通量细胞分离的人造细胞膜
  • 批准号:
    1351531
  • 财政年份:
    2014
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Continuing Grant
Coatings for Light-Actuated Nanoscale Topography
用于光驱动纳米级形貌的涂层
  • 批准号:
    1334403
  • 财政年份:
    2013
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant

相似国自然基金

FDA上市药物库筛选鉴定靶向治疗ARID1A缺陷型结直肠癌的合成致死效应及分子机制研究
  • 批准号:
    82373165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多维互质结构FDA雷达稀疏空时距自适应处理研究
  • 批准号:
    61771317
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于FDA标记畸胎瘤细胞联合人胎盘屏障体外模型建立中药胚胎毒性评价体系的研究
  • 批准号:
    81573740
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/FDA SiR: Pulse Oximetry Measurement Errors Correlated with Patient Skin Pigmentation: Optical Mechanisms and Effect Multipliers
NSF/FDA SiR:与患者皮肤色素沉着相关的脉搏血氧饱和度测量误差:光学机制和效应乘数
  • 批准号:
    2229356
  • 财政年份:
    2023
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
  • 批准号:
    2326317
  • 财政年份:
    2023
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SiR: A Nonclinical Testing Tool for Wearable Photoplethysmography-Based Blood Pressure Monitoring Devices
NSF/FDA SiR:用于基于光电体积描记法的可穿戴血压监测设备的非临床测试工具
  • 批准号:
    2325722
  • 财政年份:
    2023
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SiR: Validation and Standardization of Melanometry as a Quantitative Tool for Clinical Evaluation of Racial Disparities in Biophotonic Devices
NSF/FDA SiR:黑素测定法作为生物光子设备种族差异临床评估定量工具的验证和标准化
  • 批准号:
    2326485
  • 财政年份:
    2023
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Robust, Reliable, and Trustworthy Regulatory Science Tool for Stroke Recovery Assessment using Hybrid Brain-Muscle Functional Coupling Analysis
NSF/FDA SIR:使用混合脑-肌肉功能耦合分析进行中风恢复评估的稳健、可靠且值得信赖的监管科学工具
  • 批准号:
    2229697
  • 财政年份:
    2022
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: 3D Human Stem Cell Cardiac Model for Cardiac Electrophysiology Medical Device Safety Assessment
NSF/FDA SIR:用于心脏电生理学医疗器械安全评估的 3D 人体干细胞心脏模型
  • 批准号:
    2129369
  • 财政年份:
    2022
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Towards the Establishment of a Validation Framework for Wearable Motion Analysis Systems: Development and Evaluation of an Open-Design Sync Platform
NSF/FDA SIR:建立可穿戴运动分析系统的验证框架:开放式设计同步平台的开发和评估
  • 批准号:
    2229538
  • 财政年份:
    2022
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Assessing the Photocytotoxicity and Photochemistry of New Emerging Fluorophores
NSF/FDA SIR:评估新兴荧光团的光细胞毒性和光化学
  • 批准号:
    2037815
  • 财政年份:
    2021
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Designing for Degradation: A framework for Predicting in vivo Degradation and Mechanical Property Changes in Degradable Polymers
NSF/FDA SIR:降解设计:预测可降解聚合物体内降解和机械性能变化的框架
  • 批准号:
    2129615
  • 财政年份:
    2021
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Numerical heart model for irreversible electroporation ablation
NSF/FDA SIR:不可逆电穿孔消融的数字心脏模型
  • 批准号:
    2129626
  • 财政年份:
    2021
  • 资助金额:
    $ 9.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了