Modular biochemical networks of maize anti-pathogen defense defined by integrating synthetic biochemistry, genetics and physiological function
通过整合合成生物化学、遗传学和生理功能定义的玉米抗病原体防御的模块化生化网络
基本信息
- 批准号:1758976
- 负责人:
- 金额:$ 85.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crop biochemical defense mechanisms effective against most pests and diseases are essential to agricultural productivity. The natural genetic diversity among individual cultivars provides unique, but underutilized, layers of stress resilience. Maize (Zea mays) is the agronomically most important U.S. crop and among the most genetically diverse. Conceptually parallel to the sticky sap promoting wound healing in pine trees, maize is protected by inducible chemicals, termed diterpenoids, that act as antibiotics to suppress pest attack and disease. Empirically, maize plants lacking diterpenoid defenses display dramatic increases in fungal disease damage. The current project unveils mechanisms of crop stress resilience by defining the formation and diverse bioactivities underlying maize diterpenoid defenses. Variable chemical diversity between established inbred lines will be leveraged to identify diterpenoid-biosynthetic genes and enzyme functions using state-of-the-art genetic mapping and biochemical technologies. Integrating a systematic array of computational, wet-lab and field-based approaches will discover the biosynthetic machinery, chemical structures, and ecological importance of maize diterpenoids. These deliverables will enable new strategies for enhancing crop protection in the face of pressing needs for improving agricultural productivity. The activation of diterpenoid synthesis by readily available food-grade fungi will be developed as an educational tool in high schools to foster intellectual curiosity about plant immune responses, their agricultural use, and the importance of biochemicals to humans. The project will positively impact society by discovering and harnessing biochemical crop defenses and teaching modern STEM concepts and technologies through implementing high school Lesson Study Modules using our integrated approach.Complex combinations of biotic and abiotic stressors can overcome crop defenses and promote yield losses. As the dominant global grain crop, maize (Zea mays) contains unique and largely unresolved specialized diterpenoid metabolites that contribute to plant resilience by conferring quantitative protection against pathogens. A foundational understanding and agricultural application of molecular mechanisms underlying maize biochemical networks will be essential to further optimize crop resilience. This collaborative project will leverage complementary genetic, biochemical and ecological approaches to gain a precise mechanistic knowledge of specialized metabolites governing maize disease resistance. Integrating functional genomics, metabolomics, forward genetics, DNA synthesis, and combinatorial in vitro and in vivo protein biochemical approaches will enable rapid pathway discovery to elucidate maize-specific diterpenoid-metabolic networks. Parallel generation and analysis of maize mutants in defined pathway nodes will unravel the interrelations between fungal-elicited diterpenoid biosynthesis and pathogen resistance in planta. In tandem, in vitro anti-fungal bioassays of purified diterpenoids with a range of maize pathogens will illuminate the structure-function relationships underlying diterpenoid bioactivity. The cross-disciplinary nature of this project provides an excellent framework for training postdoctoral, graduate and undergraduate students, and will be leveraged to connect the project team with local high school teachers for developing Lesson Study Modules as a platform to engage high school students in cross-cutting principles underlying plant-pathogen interactions. To promote research and education at the confluence of maize-microbe interactions and agricultural innovation, knowledge, resources such as enzyme/metabolite catalogs, mutant lines, and training modules arising from this work will be broadly shared with the scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效对抗大多数害虫和疾病的作物生化防御机制对于农业生产力至关重要。个别品种之间的自然遗传多样性提供了独特的,但未充分利用,层的压力恢复力。玉米(Zea mays)是美国最重要的农业作物,也是遗传多样性最大的作物之一。在概念上,与松树中促进伤口愈合的粘性汁液相似,玉米受到称为二萜类化合物的诱导化学物质的保护,这种化学物质作为抗生素抑制害虫的攻击和疾病。经验上,缺乏二萜类防御的玉米植物显示真菌病害损害的显著增加。目前的项目通过定义玉米二萜类防御的形成和多样的生物活性来揭示作物抗逆性的机制。已建立的近交系之间的可变化学多样性将利用最先进的遗传作图和生物化学技术来鉴定二萜类生物合成基因和酶功能。整合一系列系统的计算,湿实验室和实地为基础的方法将发现玉米二萜类化合物的生物合成机制,化学结构和生态重要性。这些交付成果将使新的战略能够在提高农业生产力的迫切需要面前加强作物保护。通过现成的食品级真菌激活二萜类化合物的合成将被开发为高中的教育工具,以培养对植物免疫反应,农业用途以及生物化学品对人类的重要性的好奇心。该项目将通过发现和利用生物化学作物防御,并通过使用我们的综合方法实施高中课程学习模块来教授现代STEM概念和技术,从而对社会产生积极影响。生物和非生物压力源的复杂组合可以克服作物防御并促进产量损失。作为占主导地位的全球粮食作物,玉米(Zea mays)含有独特的和基本上未解决的专门的二萜类代谢物,通过提供对病原体的定量保护来促进植物的恢复力。对玉米生化网络的分子机制的基础性理解和农业应用对于进一步优化作物适应力至关重要。该合作项目将利用互补的遗传、生物化学和生态学方法,获得控制玉米抗病性的专门代谢物的精确机理知识。整合功能基因组学、代谢组学、正向遗传学、DNA合成和组合的体外和体内蛋白质生化方法将使快速途径发现能够阐明玉米特异性二萜类代谢网络。在确定的途径节点中平行产生和分析玉米突变体将揭示真菌诱导的二萜类化合物生物合成与植物病原体抗性之间的相互关系。在串联,在体外抗真菌生物测定纯化的二萜类化合物与一系列玉米病原体将阐明的结构-功能关系的二萜类化合物的生物活性。该项目的跨学科性质为培训博士后,研究生和本科生提供了一个很好的框架,并将被利用来连接项目团队与当地高中教师开发课程学习模块作为一个平台,让高中学生参与植物病原体相互作用的交叉原则。为了促进玉米-微生物相互作用和农业创新的研究和教育,将与科学界广泛分享这项工作产生的知识和资源,如酶/代谢物目录,突变株系和培训模块。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Customizable Approach for the Enzymatic Production and Purification of Diterpenoid Natural Products
二萜天然产物酶法生产和纯化的可定制方法
- DOI:10.3791/59992
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Murphy, Katherine M.;Chung, Siwon;Fogla, Shruti;Minsky, Hana B.;Zhu, Karen Yong;Zerbe, Philipp
- 通讯作者:Zerbe, Philipp
Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize
- DOI:10.1104/pp.17.01351
- 发表时间:2018-04-01
- 期刊:
- 影响因子:7.4
- 作者:Mafu, Sibongile;Ding, Yezhang;Zerbe, Philipp
- 通讯作者:Zerbe, Philipp
Multiple genes recruited from hormone pathways partition maize diterpenoid defences
- DOI:10.1038/s41477-019-0509-6
- 发表时间:2019-10-01
- 期刊:
- 影响因子:18
- 作者:Ding, Yezhang;Murphy, Katherine M.;Schmelz, Eric A.
- 通讯作者:Schmelz, Eric A.
Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity
- DOI:10.1038/s41477-020-00787-9
- 发表时间:2020-10-26
- 期刊:
- 影响因子:18
- 作者:Ding, Yezhang;Weckwerth, Philipp R.;Huffaker, Alisa
- 通讯作者:Huffaker, Alisa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Schmelz其他文献
9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory
9,10-KODA,一种由液泡膜定位的 9-脂氧合酶 ZmLOX5 产生的α-酮醇,在玉米防御昆虫取食中起信号作用。
- DOI:
10.1016/j.molp.2023.07.003 - 发表时间:
2023-08-07 - 期刊:
- 影响因子:24.100
- 作者:
Peiguo Yuan;Eli Borrego;Yong-Soon Park;Zachary Gorman;Pei-Cheng Huang;Jordan Tolley;Shawn A. Christensen;Jantana Blanford;Aruna Kilaru;Robert Meeley;Hisashi Koiwa;Stefan Vidal;Alisa Huffaker;Eric Schmelz;Michael V. Kolomiets - 通讯作者:
Michael V. Kolomiets
Eric Schmelz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
- 批准号:
10682983 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Rewiring networks for a pathogenic lifestyle
重新连接网络以适应致病的生活方式
- 批准号:
10893669 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Uncovering ATR signaling networks underlying chemotherapeutic synergies
揭示化疗协同作用背后的 ATR 信号网络
- 批准号:
10679717 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Nuclear Receptor Networks in Mucosal Immune Regulation
粘膜免疫调节中的核受体网络
- 批准号:
10822885 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Biophysical Model of Enzyme Catalysis: Conformational sub-states, solvent coupling and energy networks
酶催化的生物物理模型:构象亚态、溶剂耦合和能量网络
- 批准号:
10735359 - 财政年份:2023
- 资助金额:
$ 85.6万 - 项目类别:
Theory of biochemical reaction networks in cells: understanding and exploiting stochastic fluctuations
细胞生化反应网络理论:理解和利用随机波动
- 批准号:
RGPIN-2019-06443 - 财政年份:2022
- 资助金额:
$ 85.6万 - 项目类别:
Discovery Grants Program - Individual
Elucidating the signaling and protein interaction networks of the O-GlcNAc transferase during embryonic stem cell state transitions
阐明胚胎干细胞状态转变过程中 O-GlcNAc 转移酶的信号传导和蛋白质相互作用网络
- 批准号:
10501416 - 财政年份:2022
- 资助金额:
$ 85.6万 - 项目类别: