Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
基本信息
- 批准号:10637323
- 负责人:
- 金额:$ 32.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlzheimer&aposs DiseaseAnaphaseAssessment toolBiochemicalBiochemistryBiologicalBiological AssayBiological ModelsBiological ProcessBiophysicsBundlingC-terminalCDC2 geneCell CycleCell divisionCell physiologyCellsChromosome PositioningChromosome SegregationChromosomesCodeComplexCopy Number PolymorphismCrosslinkerCyclin BCytoskeletonDataDefectDiseaseDisease ProgressionExhibitsFailureFiberFilamentFluorescence MicroscopyFrictionFunctional disorderGoalsHumanImageIn VitroKinesinKinetochoresKnowledgeLinkMalignant NeoplasmsMeasuresMechanical StressMechanicsMediatingMetaphaseMicroscopyMicrotubule BundleMicrotubule-Associated ProteinsMicrotubulesMitosisMitoticMitotic spindleMolecularMotionMotorMultiprotein ComplexesMutationNeuronsPRC1 ProteinPhasePhenotypePhosphorylationPlayPositioning AttributeProcessProductionProteinsPublicationsPublishingRegulationResearchResistanceResolutionRoleSisterSlideStructureTechniquesTimeTotal Internal Reflection FluorescentViscosityWorkbiophysical analysisbiophysical propertiesbiophysical techniquesbiophysical toolscell typecrosslinkdiagnostic toolinsightlaser tweezerlink proteinlive cell imagingmechanical propertiesmutantnervous system disordernoveloptic tweezerprotein complexreconstitutionsingle moleculetargeted treatmenttool
项目摘要
Project Summary
Cells perform mechanical tasks across a wide range of processes including segregating chromosomes during
cell division. These tasks are accomplished by the organization of force-generating cytoskeletal networks.
Micron-scale microtubule networks need both motor and non-motor proteins to move and organize filaments into
proper functional mechanical units. Our long-term goal is to decipher the mechanical code that underlies the
assembly and function of these networks, using mitosis as a model biological process. To achieve this goal, we
will employ biochemical reconstitution, biophysical methods, single-molecule fluorescence microscopy, and live-
cell imaging. We will build on our recent publications and unpublished preliminary data to focus on microtubule
network mechanics in mitosis in the following three Aims: (1) Determine the mechanical and functional
differences between bridging fibers in metaphase and the central spindle microtubule network in anaphase.
Specifically, we will dissect the molecular mechanisms of an essential crosslinking non-motor MAP, PRC1, that
builds distinct motifs within the mitotic spindle. These features include bridging fibers that connect sister
kinetochore fibers in metaphase and the central spindle midzone array in anaphase. PRC1 is cell cycle regulated
by CDK/cyclin B, and therefore is a biochemically distinct molecule in metaphase and anaphase. We will
assemble and mechanically probe filament networks to understand how the spindle is able to differentially
generate forces and remodel itself while moving chromosomes in metaphase and anaphase. Imaging live cells
during mitosis that express mutant PRC1 constructs will validate our in vitro findings. (2) Determine the molecular
mechanisms for MAP clustering and the functional role of MAP clusters in regulating microtubule organization.
Specially, we will examine how intrinsically disordered subdomains within PRC1 contribute to MAP clustering.
Our published and preliminary data suggests that PRC1 clusters significantly impede filament sliding, and that
the C-terminal unstructured domain mediates this effect. We will employ our biophysical and cell biological tools
to determine the effect that reducing clustering has on microtubule organization. (3) Determine how complexes
of motor and non-motor MAPs collectively regulate microtubule organization. We will examine how the
Kif4A/PRC1 complex generates forces during microtubule sliding, and how a steady-state overlap arrangement
produces resistive forces that maintain spindle midzone integrity. Together, our findings should advance our
understanding of how micron-scale microtubule networks regulate chromosome motions in mitosis. We aim to
elucidate a ‘code’ that defines how the structure and biochemistry of different MAPs gives rise to cellular
machinery that can perform mechanical work. Errors in microtubule network assembly due to copy number
variations or mutations in essential MAPs are linked to disease in humans. Our research will shed light on the
biophysical properties that link network failure to disease states and may lead to therapies that target these
proteins or provide insights into diagnostic tools for assessing disease progression.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Thomas Forth其他文献
Scott Thomas Forth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Thomas Forth', 18)}}的其他基金
Single molecule kinetic studies of gamma-secretase/substrate interaction and the effects of AD-causing mutations
γ-分泌酶/底物相互作用的单分子动力学研究以及 AD 引起的突变的影响
- 批准号:
10323672 - 财政年份:2021
- 资助金额:
$ 32.11万 - 项目类别:
The Micromechanics of Central Spindle Organization
中心主轴机构的微观力学
- 批准号:
8419583 - 财政年份:2011
- 资助金额:
$ 32.11万 - 项目类别:
The Micromechanics of Central Spindle Organization
中心主轴机构的微观力学
- 批准号:
8203060 - 财政年份:2011
- 资助金额:
$ 32.11万 - 项目类别:
The Micromechanics of Central Spindle Organization
中心主轴机构的微观力学
- 批准号:
8510671 - 财政年份:2011
- 资助金额:
$ 32.11万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 32.11万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 32.11万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 32.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 32.11万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 32.11万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 32.11万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 32.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 32.11万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 32.11万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 32.11万 - 项目类别:
Research Fellowships














{{item.name}}会员




