ABI Innovation: Scalable and Agile Analysis of Mass Spectrometry Experiments

ABI 创新:质谱实验的可扩展且敏捷的分析

基本信息

  • 批准号:
    1759736
  • 负责人:
  • 金额:
    $ 79.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Mass spectrometry is a diverse and versatile technology for high-throughput functional characterization of proteins, small molecules and metabolites in complex biological mixtures. The technology rapidly evolves and generates datasets of an increasingly large complexity and size. This rapid evolution must be matched by an equally fast evolution of statistical methods and tools developed for analysis of these data. Ideally, new statistical methods should leverage the rich resources available from over 12,000 packages implemented in the R programming language and its Bioconductor project. However, technological limitations now hinder their adoption for mass spectrometric research. In response, the project ROCKET builds an enabling technology for working with large mass spectrometric datasets in R, and rapidly developing new algorithms, while benefiting from advancements in other areas of science. It also offers an opportunity of recruitment and retention of Native American students to work with R-based technology and research, and helps prepare them in a career in STEM.Instead of implementing yet another data processing pipeline, ROCKET builds an enabling technology for extending the scalability of R, and streamlining manipulations of large files in complex formats. First, to address the diversity of the mass spectrometric community, ROCKET supports scaling down analyses (i.e., working with large data files on relatively inexpensive hardware without fully loading them into memory), as well as scaling up (i.e., executing a workflow on a cloud or on a multiprocessor). Second, ROCKET generates an efficient mixture of R and target code which is compiled in the background for the particular deployment platform. By ensuring compatibility with mass spectrometry-specific open data storage standards, supporting multiple hardware scenarios, and generating optimized code, ROCKET enables the development of general analytical methods. Therefore, ROCKET aims to democratize access to R-based data analysis for a broader community of life scientists, and create a blueprint for a new paradigm for R-based computing with large datasets. The outcomes of the project will be documented and made publicly available at https://olgavitek-lab.ccis.northeastern.edu/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
质谱学是一种多种多样、用途广泛的技术,用于对复杂生物混合物中的蛋白质、小分子和代谢物进行高通量功能表征。该技术迅速发展,并生成越来越大的复杂性和大小的数据集。这一快速演变必须与为分析这些数据而开发的统计方法和工具的同样快速演变相匹配。理想情况下,新的统计方法应该利用R编程语言及其BioConductor项目中实现的12,000多个包提供的丰富资源。然而,技术上的限制现在阻碍了它们在质谱学研究中的应用。作为回应,火箭项目建立了一项使能技术,用于处理R中的大型质谱学数据集,并迅速开发新的算法,同时受益于其他科学领域的进步。它还为招收和留住美洲原住民学生提供了从事基于R的技术和研究的机会,并帮助他们在STEM的职业生涯中做好准备。Rocket没有实施另一条数据处理管道,而是构建了一种使能技术,用于扩展R的可扩展性,并简化复杂格式的大文件操作。首先,为了解决质谱学社区的多样性,Rocket支持缩减分析(即,在相对便宜的硬件上处理大型数据文件,而无需将其完全加载到内存中),以及放大(即,在云或多处理器上执行工作流)。其次,Rocket生成针对特定部署平台在后台编译的R和目标代码的高效混合。通过确保与特定于质谱学的开放数据存储标准的兼容性、支持多种硬件方案以及生成优化的代码,Rocket能够开发通用的分析方法。因此,火箭的目标是为更广泛的生命科学家社区普及基于R的数据分析,并为使用大数据集的基于R的计算的新范式创建蓝图。该项目的结果将被记录下来,并在https://olgavitek-lab.ccis.northeastern.edu/This上公开提供,该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deoptless: speculation with dispatched on-stack replacement and specialized continuations
Deoptless:通过调度堆栈替换和专门的延续进行推测
Sampling optimized code for type feedback
为类型反馈采样优化代码
World age in Julia: optimizing method dispatch in the presence of eval
Julia 的世界时代:在 eval 存在的情况下优化方法调度
First-class environments in R
一流的 R 环境
Type stability in Julia: avoiding performance pathologies in JIT compilation
Julia 中的类型稳定性:避免 JIT 编译中的性能问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Vitek其他文献

Benchmarking comes of age
  • DOI:
    10.1186/s13059-019-1846-5
  • 发表时间:
    2019-10-09
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Mark D. Robinson;Olga Vitek
  • 通讯作者:
    Olga Vitek
Cardinal v.3: a versatile open-source software for mass spectrometry imaging analysis
Cardinal v.3:用于质谱成像分析的多功能开源软件
  • DOI:
    10.1038/s41592-023-02070-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Kylie A. Bemis;M. Föll;Dan Guo;Sai Srikanth Lakkimsetty;Olga Vitek
  • 通讯作者:
    Olga Vitek
Analysis and validation of proteomic data generated by tandem mass spectrometry
串联质谱产生的蛋白质组学数据的分析和验证
  • DOI:
    10.1038/nmeth1088
  • 发表时间:
    2007-09-27
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Alexey I Nesvizhskii;Olga Vitek;Ruedi Aebersold
  • 通讯作者:
    Ruedi Aebersold
An MSstats workflow for detecting differentially abundant proteins in large-scale data-independent acquisition mass spectrometry experiments with FragPipe processing
用于在使用 FragPipe 处理的大规模数据非依赖性采集质谱实验中检测差异丰富蛋白质的 MSstats 工作流程
  • DOI:
    10.1038/s41596-024-01000-3
  • 发表时间:
    2024-05-20
  • 期刊:
  • 影响因子:
    16.000
  • 作者:
    Devon Kohler;Mateusz Staniak;Fengchao Yu;Alexey I. Nesvizhskii;Olga Vitek
  • 通讯作者:
    Olga Vitek
Spatial segmentation and feature selection for desi imaging mass spectrometry data with spatially-aware sparse clustering
  • DOI:
    10.1186/1471-2105-13-s18-a8
  • 发表时间:
    2012-12-14
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Kyle D Bemis;Livia Eberlin;Christina Ferreira;R Graham Cooks;Olga Vitek
  • 通讯作者:
    Olga Vitek

Olga Vitek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olga Vitek', 18)}}的其他基金

CAREER: Sparse-sampling inference for functional proteomics, metabolomics and ionomics
职业:功能蛋白质组学、代谢组学和离子组学的稀疏采样推断
  • 批准号:
    1501900
  • 财政年份:
    2014
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Continuing Grant
CAREER: Sparse-sampling inference for functional proteomics, metabolomics and ionomics
职业:功能蛋白质组学、代谢组学和离子组学的稀疏采样推断
  • 批准号:
    1054826
  • 财政年份:
    2011
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Continuing Grant

相似海外基金

TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
  • 批准号:
    10103504
  • 财政年份:
    2024
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
  • 批准号:
    2151406
  • 财政年份:
    2023
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Standard Grant
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10584588
  • 财政年份:
    2021
  • 资助金额:
    $ 79.59万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10390334
  • 财政年份:
    2021
  • 资助金额:
    $ 79.59万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10177121
  • 财政年份:
    2021
  • 资助金额:
    $ 79.59万
  • 项目类别:
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
  • 批准号:
    2210266
  • 财政年份:
    2021
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Standard Grant
Innovation of age-related macular disease treatment by a scalable DDS platform
通过可扩展的 DDS 平台创新年龄相关性黄斑疾病治疗
  • 批准号:
    20K12640
  • 财政年份:
    2020
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track D: Scalable, TRaceable Ai for Imaging Translation: Innovation to Implementation for Accelerated Impact (STRAIT I3)
NSF 融合加速器轨道 D:可扩展、可追踪的成像翻译人工智能:加速影响的创新实施 (STRAIT I3)
  • 批准号:
    2040462
  • 财政年份:
    2020
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
  • 批准号:
    1835598
  • 财政年份:
    2018
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Framework: Software: CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science
合作研究:框架:软件:CINES:用于网络工程和科学持续创新的可扩展网络基础设施
  • 批准号:
    1835660
  • 财政年份:
    2018
  • 资助金额:
    $ 79.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了