Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
基本信息
- 批准号:10177121
- 负责人:
- 金额:$ 47.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-09 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdoptionAfricaAlgorithmsApplications GrantsAttentionBayesian MethodBiologicalBiologyClinicalClinical ManagementCommunicable DiseasesCommunitiesComputer softwareDataData ScienceData SetDevelopmentDiseaseDisease OutbreaksEbolaEpidemicEvolutionFactor AnalysisFeverFosteringGenomicsGenotypeHIVHealth PolicyHeterogeneityHumanHuman ResourcesIndividualInfectious Disease EpidemiologyInfluenzaInternationalInterventionJointsLibrariesLinkManufacturer NameMapsMarriageMeasurementMeasuresMedicineMethodsModelingMolecular EpidemiologyPeer ReviewPerformancePhenotypePhylogenetic AnalysisPublic HealthPublishingResearchSamplingSampling ErrorsScienceScientistStatistical ComputingStatistical ModelsSuggestionTechniquesTechnologyThinkingTimeTouch sensationTrainingTransportationTreesUnderrepresented MinorityUnderrepresented PopulationsViralViral GenomeWest Nile virusWomanWorkYellow FeverZika Virusburden of illnesscohortcombatcomparativecomputerized toolsdata integrationdata streamsdesigndisabilitygenome sequencinggraduate studenthigh dimensionalityinnovationminority scientistmultidisciplinarynext generationnovelpandemic diseaseparallel computerpathogenpathogen genomepathogenic bacteriaphenotypic datareconstructionstatisticstheoriestraittransmission processundergraduate studentuser friendly software
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposal targets the design, development and distribution of Bayesian statistical methods and software
to study the historical and real-time emergence of rapidly evolving pathogens, such as Ebola, human immun-
odeficiency, influenza, Lassa, SARS-CoV-2, West Nile, yellow fever and Zika viruses. The proposal exploits
novel scalable data integration to equip us for large-scale epidemics and pandemics and help inform action-
able public health policy. Our multidisciplinary team carries expertise across statistical thinking, data science,
evolutionary biology and infectious diseases to leverage advancing sequencing technology and high-throughput
biological experimentation that can characterize 1000s of pathogen genomes, phenotype measurements, eco-
logical and clinical information from a single outbreak. Our chief innovations are three-fold. First, we will invent
and implement scalable Bayesian phylodynamic techniques to integrate phenotypic measurements and study
their correlated evolution with disease spread. Second, we will foster biologically-rich evolutionary models to
map and understand heterogeneity in disease evolution through new efficient algorithms. Third, we will develop
high-dimensional and mixed-type phenotype models to link concerted viral genotype / phenotype changes using
massively parallel computing. Although no competing software exists to integrate phenotype and sequence data
at this scale, we will compare restricted cases of our models with reduced datasets to current state-of-the-art
approaches to evaluate computational performance improvement and bias that these limitations inject using real-
world examples. This proposal will deliver low-level toolbox libraries and user-friendly software for deployment
across a rapidly expanding range of large-scale problems in statistics and medicine.
项目总结/摘要
本提案针对贝叶斯统计方法和软件的设计、开发和分发
研究历史和快速演变的病原体的实时出现,如埃博拉病毒,人类免疫,
病毒,包括Lassa病毒、SARS-CoV-2病毒、西尼罗河病毒、黄热病病毒和寨卡病毒。该提案利用了
新颖的可扩展数据集成,使我们能够应对大规模流行病和流行病,并帮助采取行动-
健全的公共卫生政策。我们的多学科团队拥有统计思维,数据科学,
利用先进的测序技术和高通量技术,
生物实验,可以表征1000个病原体基因组,表型测量,生态,
从一次爆发中获得的逻辑和临床信息。我们的主要创新有三个方面。首先,我们将发明
并实施可扩展的贝叶斯贝叶斯动态技术,以整合表型测量和研究
它们与疾病传播相关的进化。其次,我们将培育生物丰富的进化模型,
通过新的有效算法绘制和理解疾病演变中的异质性。第三,我们将发展
高维和混合型表型模型,以使用
大规模并行计算虽然没有竞争软件存在整合表型和序列数据
在这个尺度上,我们将把我们的模型的限制情况与当前最先进的数据集进行比较
方法来评估计算性能的改善和偏见,这些限制注入使用真实的-
世界榜样。该提案将提供低级工具箱库和用户友好的部署软件
在统计学和医学中迅速扩大的大规模问题的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc A. Suchard其他文献
Unlocking efficiency in real-world collaborative studies: a multi-site international study with one-shot lossless GLMM algorithm
在现实世界的协作研究中释放效率:一项具有一次性无损广义线性混合模型算法的多站点国际研究
- DOI:
10.1038/s41746-025-01846-1 - 发表时间:
2025-07-19 - 期刊:
- 影响因子:15.100
- 作者:
Jiayi Tong;Jenna M. Reps;Chongliang Luo;Yiwen Lu;Lu Li;Juan Manuel Ramirez-Anguita;Milou T. Brand;Scott L. DuVall;Thomas Falconer;Alex Mayer Fuentes;Xing He;Michael E. Matheny;Miguel A. Mayer;Bhavnisha K. Patel;Katherine R. Simon;Marc A. Suchard;Guojun Tang;Benjamin Viernes;Ross D. Williams;Mui van Zandt;Fei Wang;Jiang Bian;Jiayu Zhou;David A. Asch;Yong Chen - 通讯作者:
Yong Chen
Authors’ Response to Huang et al.’s Comment on “Serially Combining Epidemiological Designs Does Not Improve Overall Signal Detection in Vaccine Safety Surveillance”
- DOI:
10.1007/s40264-024-01411-x - 发表时间:
2024-03-05 - 期刊:
- 影响因子:3.800
- 作者:
Fan Bu;Faaizah Arshad;George Hripcsak;Patrick B. Ryan;Martijn J. Schuemie;Marc A. Suchard - 通讯作者:
Marc A. Suchard
Transmission dynamics of the 2022 mpox epidemic in New York City
2022 年猴痘疫情在纽约市的传播动态
- DOI:
10.1038/s41591-025-03526-9 - 发表时间:
2025-03-25 - 期刊:
- 影响因子:50.000
- 作者:
Jonathan E. Pekar;Yu Wang;Jade C. Wang;Yucai Shao;Faten Taki;Lisa A. Forgione;Helly Amin;Tyler Clabby;Kimberly Johnson;Lucia V. Torian;Sarah L. Braunstein;Preeti Pathela;Enoma Omoregie;Scott Hughes;Marc A. Suchard;Tetyana I. Vasylyeva;Philippe Lemey;Joel O. Wertheim - 通讯作者:
Joel O. Wertheim
BEAST X for Bayesian phylogenetic, phylogeographic and phylodynamic inference
用于贝叶斯系统发育、系统地理和系统动态推断的 BEAST X
- DOI:
10.1038/s41592-025-02751-x - 发表时间:
2025-07-07 - 期刊:
- 影响因子:32.100
- 作者:
Guy Baele;Xiang Ji;Gabriel W. Hassler;John T. McCrone;Yucai Shao;Zhenyu Zhang;Andrew J. Holbrook;Philippe Lemey;Alexei J. Drummond;Andrew Rambaut;Marc A. Suchard - 通讯作者:
Marc A. Suchard
Artificial intelligence for modelling infectious disease epidemics
用于模拟传染病流行的人工智能
- DOI:
10.1038/s41586-024-08564-w - 发表时间:
2025-02-19 - 期刊:
- 影响因子:48.500
- 作者:
Moritz U. G. Kraemer;Joseph L.-H. Tsui;Serina Y. Chang;Spyros Lytras;Mark P. Khurana;Samantha Vanderslott;Sumali Bajaj;Neil Scheidwasser;Jacob Liam Curran-Sebastian;Elizaveta Semenova;Mengyan Zhang;H. Juliette T. Unwin;Oliver J. Watson;Cathal Mills;Abhishek Dasgupta;Luca Ferretti;Samuel V. Scarpino;Etien Koua;Oliver Morgan;Houriiyah Tegally;Ulrich Paquet;Loukas Moutsianas;Christophe Fraser;Neil M. Ferguson;Eric J. Topol;David A. Duchêne;Tanja Stadler;Patricia Kingori;Michael J. Parker;Francesca Dominici;Nigel Shadbolt;Marc A. Suchard;Oliver Ratmann;Seth Flaxman;Edward C. Holmes;Manuel Gomez-Rodriguez;Bernhard Schölkopf;Christl A. Donnelly;Oliver G. Pybus;Simon Cauchemez;Samir Bhatt - 通讯作者:
Samir Bhatt
Marc A. Suchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc A. Suchard', 18)}}的其他基金
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
- 批准号:
10584588 - 财政年份:2021
- 资助金额:
$ 47.83万 - 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
- 批准号:
10390334 - 财政年份:2021
- 资助金额:
$ 47.83万 - 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
- 批准号:
10579085 - 财政年份:2018
- 资助金额:
$ 47.83万 - 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
- 批准号:
10374718 - 财政年份:2018
- 资助金额:
$ 47.83万 - 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
- 批准号:
10310604 - 财政年份:2018
- 资助金额:
$ 47.83万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7596504 - 财政年份:2008
- 资助金额:
$ 47.83万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7660485 - 财政年份:2008
- 资助金额:
$ 47.83万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
8116012 - 财政年份:2008
- 资助金额:
$ 47.83万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7883433 - 财政年份:2008
- 资助金额:
$ 47.83万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
8302280 - 财政年份:2008
- 资助金额:
$ 47.83万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.83万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Standard Grant