Developing Methodology for Commensuration Bias Detection in Grant Application Peer Review
开发拨款申请同行评审中的补偿偏差检测方法
基本信息
- 批准号:1759825
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through its six federal grant agencies, the United States invests billions of dollars annually to promote science, technology, and engineering research at colleges and universities. The long-term goal of this public investment of money and trust is to improve our nation's health, economy, and social policies. In order to determine which researchers and projects will receive funding, grant agencies employ a process of peer review in which expert researchers evaluate the merits of submitted proposals. This longstanding social technology -- of relying on expert evaluation to inform determinations of merit -- empowers grant agencies to make funding decisions based on a fuller understanding of the social and scientific excellence of each project. As such, it is critical for grant agencies to employ rigorous and fair peer review processes in order to recruit, retain, and fund the best minds. This project builds on a growing scientific literature that studies how grant peer review works with an eye towards identifying ways of improving its effectiveness. More specifically, grant proposal review procedures commonly require reviewers to score applications along multiple dimensions -- for example, a proposal's approach, innovation, versus significance -- as an intermediate step in determining the proposal's overall score. When procedures are left unspecified for how reviewers should combine individual scores (along multiple dimensions) into overall scores, evaluators might arrive at overall scores in ways that subtly advantage and disadvantage grant proposals submitted by applicants from different social groups. Any such difference is what we call commensuration bias. This research identifies and evaluates approaches for measuring commensuration bias by analyzing peer review data from applications submitted to an ongoing intramural collaborative biomedical research program that utilized the independent peer review services of the American Institute of Biological Sciences. This project aims to offer concrete, efficient policies that ensure fair review for any grant agency that requires scoring of applications along multiple criteria, including the National Institutes of Health, which is the world's largest public funder of biomedical research in the world.There is currently no established methodology for detecting commensuration bias. The availability of criteria and overall scores from individual reviewers makes it possible to examine how individual reviewers evaluate multiple criteria simultaneously and how they unconsciously combine criteria scores to arrive at overall scores. In addition to hierarchical linear models that assume overall application score is an additive function of criteria scores, this study uses Bayesian regression trees to model non-linear decision processes and multivariate analyses to model the distribution of criteria scores. This range of statistical approaches allows this study to avoid making strong assumptions about the nature of commensuration and provides tools needed to inform two main types of potential policy recommendations: (a) those that focus on the restructuring or modification of programmatic review procedures as a whole and (b) those that focus on the monitoring of unusual peer review scores.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过六个联邦拨款机构,美国每年投资数十亿美元,以促进学院和大学的科学、技术和工程研究。这种资金和信任的公共投资的长期目标是改善我们国家的健康,经济和社会政策。为了确定哪些研究人员和项目将获得资助,资助机构采用了同行评审的程序,由专家研究人员评估提交的提案的优点。这种长期存在的社会技术----依靠专家评估来确定价值----使赠款机构能够在更充分地了解每个项目的社会和科学优点的基础上作出资助决定。因此,资助机构必须采用严格和公平的同行评审程序,以招募、留住和资助最优秀的人才。该项目建立在越来越多的科学文献的基础上,这些文献研究了赠款同行评审如何工作,以期确定提高其有效性的方法。更具体地说,拨款申请审查程序通常要求审查人员从沿着多个方面对申请进行评分--例如,申请的方法、创新性和重要性--作为确定申请总体得分的中间步骤。当评审员不知道如何将联合收割机的个人评分(沿着多个维度)结合成总分时,评审员可能会以微妙的方式得出总分,从而对来自不同社会群体的申请人提交的资助申请产生有利或不利的影响。任何这样的差异就是我们所说的解释偏差。本研究确定和评估的方法来衡量通过分析同行评审数据提交给一个正在进行的校内合作生物医学研究计划,利用独立的同行评审服务的美国生物科学研究所的应用程序的偏差。该项目旨在提供具体、有效的政策,以确保对任何需要根据沿着多个标准对申请进行评分的资助机构进行公平审查,其中包括美国国立卫生研究院(National Institutes of Health),该研究院是世界上最大的生物医学研究公共资助机构。个体评审员的标准和总体评分的可用性使得有可能检查个体评审员如何同时评估多个标准以及他们如何无意识地将联合收割机标准评分组合以获得总体评分。除了分层线性模型,假设整体应用程序的分数是一个加性函数的标准分数,本研究使用贝叶斯回归树模型的非线性决策过程和多变量分析模型的标准分数的分布。这一系列统计方法使本研究避免了对通货膨胀的性质作出强有力的假设,并提供了必要的工具,为两种主要类型的潜在政策建议提供信息:(a)侧重于整个方案审查程序的结构调整或修改的方案,以及(B)该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alternative grant models might perpetuate Black–White funding gaps
替代性资助模式可能会导致黑人与白人之间的资金缺口长期存在
- DOI:10.1016/s0140-6736(20)32018-3
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lee, Carole J;Grant, Sheridan;Erosheva, Elena A
- 通讯作者:Erosheva, Elena A
Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability
内部和外部申请人评级的差异:基于模型的评级者间可靠性案例
- DOI:10.1371/journal.pone.0203002
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Martinková, P.;Goldhaber, D.;Erosheva, E.
- 通讯作者:Erosheva, E.
The Reference Class Problem for Credit Valuation in Science
科学信用评估的参考类问题
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Lee, Carole J.
- 通讯作者:Lee, Carole J.
NIH peer review: Criterion scores completely account for racial disparities in overall impact scores
- DOI:10.1126/sciadv.aaz4868
- 发表时间:2020-06-01
- 期刊:
- 影响因子:13.6
- 作者:Erosheva, Elena A.;Grant, Sheridan;Lee, Carole J.
- 通讯作者:Lee, Carole J.
Refinement: Measuring informativeness of ratings in the absence of a gold standard
- DOI:10.1111/bmsp.12268
- 发表时间:2022-03-16
- 期刊:
- 影响因子:2.6
- 作者:Grant, Sheridan;Meila, Marina;Lee, Carole
- 通讯作者:Lee, Carole
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Erosheva其他文献
Elena Erosheva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Erosheva', 18)}}的其他基金
Improving Panel Decision Making: Understanding Methods for Aggregating Reviewer Opinions
改进小组决策:了解汇总审稿人意见的方法
- 批准号:
2019901 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
スマートシティのエコシステム構築メソドロジー(methodology)
智慧城市生态系统构建方法论
- 批准号:
24K05098 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mindset Dynamics: Using the Perception Clarity Methodology (PCM) to shift perceptions
心态动态:使用感知清晰度方法 (PCM) 来转变认知
- 批准号:
ES/Y011015/1 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Research Grant
Supporting Mental Health in Young People: Integrated Methodology for cLinical dEcisions and evidence-based interventions
支持年轻人的心理健康:临床决策和循证干预的综合方法
- 批准号:
10072391 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
EU-Funded
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
EU-Funded
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
- 批准号:
23H01578 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Curriculum Development Methodology for Inclusive Physical Education that Respects Diversity
尊重多样性的包容性体育课程开发方法
- 批准号:
23K02486 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Agile development methodology of matched synthetic control for Bayesian trials in the era of genomic medicine
基因组医学时代贝叶斯试验匹配合成控制的敏捷开发方法
- 批准号:
2890403 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Studentship