Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
基本信息
- 批准号:1760233
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-10 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main subject of research is complex analysis, which combines complex numbers with the theory of calculus. Complex analysis is a fundamental tool in many applications. In particular, it is used in physics (for instance: studying the flow of air past an airfoil and dispersion relations in optics), engineering (for instance: signal processing and control theory), and computer science (for instance: image processing and quantum computation). Moreover, complex analysis of a single variable is a classical and well understood mathematical subject, but when additional variables are introduced many mysteries remain. The primary aim of the efforts of the PI is to further the theoretical understanding of complex analysis of several variables. The PI will advance the understanding of the behavior of holomorphic maps between bounded domains in higher dimensional complex Euclidean space. In the field of several complex variables, there have been many deep investigations into when holomorphic maps extend continuously to the boundary, the behavior of iterations of holomorphic maps, and the properties of the biholomorphism group of a bounded domain. The standard approach to studying these problems uses methods from partial differential equations and differential geometry. The PI will study these problems using techniques from the theory of non-positively curved metric spaces. This approach is motivated by the great success of geometric group theory, where metric space techniques applied to group theory have lead to many important results. By using metric spaces techniques in several complex variables, the PI will be able to study classes of domains which are typically outside the reach of the standard analytic methods and also make progress on old problems. This part of the activity will enhance knowledge about the biholomorphism group of complex manifolds, connections between the boundary of a domain and its complex geometry, the iterations of holomorphic maps, continuous extensions of holomorphic maps, realizations of Hermitian symmetric spaces, and the complex geometry of certain smooth quasi-projective algebraic varieties.
主要研究课题是复数分析,将复数与微积分理论相结合。复杂分析是许多应用中的基本工具。特别是,它用于物理学(例如:研究经过机翼的空气流动和光学中的色散关系)、工程(例如:信号处理和控制理论)和计算机科学(例如:图像处理和量子计算)。此外,单个变量的复杂分析是一门经典且易于理解的数学学科,但当引入其他变量时,仍然存在许多谜团。 PI 工作的主要目的是进一步加深对多个变量的复杂分析的理论理解。 PI 将促进对高维复杂欧几里德空间中有界域之间的全纯映射行为的理解。在多复变量领域,人们对全纯映射连续延伸到边界时、全纯映射的迭代行为以及有界域双全纯群的性质进行了许多深入的研究。研究这些问题的标准方法使用偏微分方程和微分几何的方法。 PI 将使用非正弯曲度量空间理论的技术来研究这些问题。这种方法是由几何群论的巨大成功推动的,其中度量空间技术应用于群论已经产生了许多重要的结果。通过在多个复杂变量中使用度量空间技术,PI 将能够研究通常超出标准分析方法范围的领域类别,并在老问题上取得进展。这部分活动将增强有关复流形双全纯群、域边界与其复几何之间的联系、全纯映射的迭代、全纯映射的连续扩展、埃尔米特对称空间的实现以及某些光滑准射影代数簇的复几何的知识。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Smoothly bounded domains covering finite volume manifolds
- DOI:10.4310/jdg/1631124346
- 发表时间:2018-02
- 期刊:
- 影响因子:2.5
- 作者:Andrew M. Zimmer
- 通讯作者:Andrew M. Zimmer
The automorphism group and limit set of a bounded domain II: the convex case
有界域的自同构群和极限集 II:凸情况
- DOI:10.1112/jlms.12435
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Two boundary rigidity results for holomorphic maps
全纯贴图的两个边界刚度结果
- DOI:10.1353/ajm.2022.0002
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Asymptotic behavior of orbits of holomorphic semigroups
全纯半群轨道的渐近行为
- DOI:10.1016/j.matpur.2019.05.005
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bracci, Filippo;Contreras, Manuel D.;Díaz-Madrigal, Santiago;Gaussier, Hervé;Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents
- DOI:10.1007/s00208-018-1715-7
- 发表时间:2017-03
- 期刊:
- 影响因子:1.4
- 作者:Andrew M. Zimmer
- 通讯作者:Andrew M. Zimmer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Zimmer其他文献
Towards a global machine learning model to fill gaps in flood frequency: Random Forest to estimate MNDWI in Bangladesh
建立全球机器学习模型来填补洪水频率的空白:利用随机森林来估计孟加拉国的 MNDWI
- DOI:
10.1109/migars61408.2024.10544525 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
James Houghton;C. Hultquist;James Atlas;Andrew Zimmer - 通讯作者:
Andrew Zimmer
A mediation analysis of the linkages between climate variability, water insecurity, and interpersonal violence
气候变化、水不安全和人际暴力之间联系的中介分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
A. Ross;Elizabeth A. Mack;Richard A. Marcantonio;Laura E. Miller;A. Pearson;Audrey C. Smith;Erin L. Bunting;Andrew Zimmer - 通讯作者:
Andrew Zimmer
Homeomorphic extension of quasi-isometries for convex domains in $${\mathbb {C}}^d$$ and iteration theory
- DOI:
10.1007/s00208-020-01954-1 - 发表时间:
2020-01-20 - 期刊:
- 影响因子:1.400
- 作者:
Filippo Bracci;Hervé Gaussier;Andrew Zimmer - 通讯作者:
Andrew Zimmer
Governance of traditional markets and rural-urban food systems in sub-Saharan Africa
撒哈拉以南非洲传统市场和城乡粮食系统的治理
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.8
- 作者:
J. Davies;Jordan Blekking;C. Hannah;Andrew Zimmer;Nupur Joshi;P. Anderson;Allan Chilenga;Tom Evans - 通讯作者:
Tom Evans
Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making
气候变化与天气预报准确性之间的联系:农业决策工具的新障碍
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.8
- 作者:
Z. Guido;S. Lopus;Kurt B. Waldman;C. Hannah;Andrew Zimmer;N. Krell;Chris Knudson;L. Estes;Kelly K. Caylor;Tom Evans - 通讯作者:
Tom Evans
Andrew Zimmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Zimmer', 18)}}的其他基金
CAREER: Intrinsic and Extrinsic Conditions in Several Complex Variables
职业:几个复杂变量的内在和外在条件
- 批准号:
2105580 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: Intrinsic and Extrinsic Conditions in Several Complex Variables
职业:几个复杂变量的内在和外在条件
- 批准号:
1942302 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
2104381 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
1904099 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
1700079 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Coxeter groups and nonpositive curvature
Coxeter 群和非正曲率
- 批准号:
RGPIN-2019-04458 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Subgroups and Combinatorial Nonpositive Curvature
子群和组合非正曲率
- 批准号:
RGPIN-2018-04453 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and nonpositive curvature
Coxeter 群和非正曲率
- 批准号:
RGPIN-2019-04458 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Subgroups and Combinatorial Nonpositive Curvature
子群和组合非正曲率
- 批准号:
RGPIN-2018-04453 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Subgroups and Combinatorial Nonpositive Curvature
子群和组合非正曲率
- 批准号:
RGPIN-2018-04453 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
2104381 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Coxeter groups and nonpositive curvature
Coxeter 群和非正曲率
- 批准号:
RGPIN-2019-04458 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Challenges in Negative and Nonpositive Curvature
负曲率和非正曲率的挑战
- 批准号:
1906538 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Subgroups and Combinatorial Nonpositive Curvature
子群和组合非正曲率
- 批准号:
RGPIN-2018-04453 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual