CAREER: Intrinsic and Extrinsic Conditions in Several Complex Variables
职业:几个复杂变量的内在和外在条件
基本信息
- 批准号:2105580
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns complex analysis, which combines complex numbers with the theory of calculus. Complex analysis is a fundamental tool in many applications. In particular, it is used in physics (for instance: studying the flow of air past an airfoil and dispersion relations in optics), engineering (for instance: signal processing and control theory), and computer science (for instance: image processing and quantum computation). Complex analysis of a single variable is a classical and well understood mathematical subject, but when additional variables are introduced many mysteries remain. In this project, the PI will further the theoretical understanding of complex analysis of several variables. This project also has a substantial educational component: The PI will develop a research experience in data science for first year undergraduate students at Louisiana State University (LSU). This program will prepare participants for a career in STEM, solidify their knowledge of basic mathematics, and give them an opportunity to learn about data science. In the research part of this project, the PI will study bounded domains in complex Euclidean space and relate intrinsic geometric conditions (e.g. the geometry of the Kaehler-Einstein metric) to extrinsic geometric conditions (e.g. the CR-geometry of the boundary). Many classical results in the subject consider bounded domains in complex Euclidean space, assume that the boundary is smooth, and make assumptions about the CR-geometry of the boundary. For domains with non-smooth boundary, the PI will prove new variants of classical results by assuming geometric conditions on the Kaehler-Einstein metric instead of conditions on the boundary. Using this approach, the PI will be able to study classes of domains which are typically outside the reach of the standard analytic methods and also make progress on old problems. This approach is motivated by the great success of geometric group theory where metric space techniques applied to group theory not only lead to progress on old problems, but also many new and interesting examples.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及复分析,它将复数与微积分理论相结合。复杂分析是许多应用中的基本工具。特别是,它被用于物理学(例如:研究气流经过机翼和色散关系在光学),工程(例如:信号处理和控制理论),和计算机科学(例如:图像处理和量子计算)。单变量的复杂分析是一个经典的、很容易理解的数学主题,但是当引入额外的变量时,许多谜团仍然存在。在本课题中,PI将进一步加深对多变量复变分析的理论认识。该项目还具有重要的教育内容:PI将为路易斯安那州立大学(LSU)的一年级本科生开发数据科学研究经验。该计划将为参与者在STEM领域的职业生涯做好准备,巩固他们的基础数学知识,并为他们提供学习数据科学的机会。在该项目的研究部分,PI将研究复杂欧几里德空间中的有界域,并将内在几何条件(例如Kaehler-Einstein度量的几何)与外在几何条件(例如边界的cr几何)联系起来。该学科的许多经典成果考虑复欧几里德空间中的有界域,假设边界是光滑的,并对边界的cr几何进行假设。对于具有非光滑边界的域,PI将通过假设Kaehler-Einstein度规上的几何条件而不是边界上的条件来证明经典结果的新变体。使用这种方法,PI将能够研究通常超出标准分析方法范围的领域类别,并在老问题上取得进展。这种方法的动机是几何群论的巨大成功,将度量空间技术应用于群论不仅在老问题上取得进展,而且还带来了许多新的和有趣的例子。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unbounded visibility domains, the end compactification, and applications
无界可见域、最终紧凑化和应用
- DOI:10.1090/tran/8944
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Bharali, Gautam;Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups
几何有限 Fuchsian 群的尖点 Hitchin 表示和 Anosov 表示
- DOI:10.1016/j.aim.2022.108439
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Canary, Richard;Zhang, Tengren;Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Smoothly bounded domains covering compact manifolds
覆盖紧凑流形的平滑边界域
- DOI:10.1512/iumj.2021.70.9380
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Hankel Operators on Domains with Bounded Intrinsic Geometry
有界本征几何域上的 Hankel 算子
- DOI:10.1007/s12220-023-01231-y
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
Convex cocompact actions of relatively hyperbolic groups
相对双曲群的凸协紧作用
- DOI:10.2140/gt.2023.27.417
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Islam, Mitul;Zimmer, Andrew
- 通讯作者:Zimmer, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Zimmer其他文献
Towards a global machine learning model to fill gaps in flood frequency: Random Forest to estimate MNDWI in Bangladesh
建立全球机器学习模型来填补洪水频率的空白:利用随机森林来估计孟加拉国的 MNDWI
- DOI:
10.1109/migars61408.2024.10544525 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
James Houghton;C. Hultquist;James Atlas;Andrew Zimmer - 通讯作者:
Andrew Zimmer
A mediation analysis of the linkages between climate variability, water insecurity, and interpersonal violence
气候变化、水不安全和人际暴力之间联系的中介分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
A. Ross;Elizabeth A. Mack;Richard A. Marcantonio;Laura E. Miller;A. Pearson;Audrey C. Smith;Erin L. Bunting;Andrew Zimmer - 通讯作者:
Andrew Zimmer
Homeomorphic extension of quasi-isometries for convex domains in $${\mathbb {C}}^d$$ and iteration theory
- DOI:
10.1007/s00208-020-01954-1 - 发表时间:
2020-01-20 - 期刊:
- 影响因子:1.400
- 作者:
Filippo Bracci;Hervé Gaussier;Andrew Zimmer - 通讯作者:
Andrew Zimmer
Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making
气候变化与天气预报准确性之间的联系:农业决策工具的新障碍
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.8
- 作者:
Z. Guido;S. Lopus;Kurt B. Waldman;C. Hannah;Andrew Zimmer;N. Krell;Chris Knudson;L. Estes;Kelly K. Caylor;Tom Evans - 通讯作者:
Tom Evans
Governance of traditional markets and rural-urban food systems in sub-Saharan Africa
撒哈拉以南非洲传统市场和城乡粮食系统的治理
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.8
- 作者:
J. Davies;Jordan Blekking;C. Hannah;Andrew Zimmer;Nupur Joshi;P. Anderson;Allan Chilenga;Tom Evans - 通讯作者:
Tom Evans
Andrew Zimmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Zimmer', 18)}}的其他基金
CAREER: Intrinsic and Extrinsic Conditions in Several Complex Variables
职业:几个复杂变量的内在和外在条件
- 批准号:
1942302 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
2104381 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
1904099 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
1700079 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Applications of Nonpositive Curvature in Several Complex Variables
非正曲率在多复变量中的应用
- 批准号:
1760233 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Defining cell intrinsic and extrinsic regulators of ferroptosis in pancreatic cancer
定义胰腺癌铁死亡的细胞内在和外在调节因子
- 批准号:
10679812 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Intrinsic and Extrinsic factors regulating neurogenic competence in hypothalamic tanycytes
调节下丘脑单细胞神经源能力的内在和外在因素
- 批准号:
10828978 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Dissecting the intrinsic and extrinsic regulators of prostate cancer dormancy in the bonemicroenvironment.
剖析骨微环境中前列腺癌休眠的内在和外在调节因子。
- 批准号:
10743406 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Building engagement in a classification data-analysis, citizen science video game using Self-Determination Theory's intrinsic and extrinsic motivator
利用自决理论的内在和外在动机建立对分类数据分析、公民科学视频游戏的参与
- 批准号:
2890021 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Dissecting the tumor-intrinsic and -extrinsic roles of TBK1 in tumor immunity
解析 TBK1 在肿瘤免疫中的肿瘤内在和外在作用
- 批准号:
10716636 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cell Intrinsic and Extrinsic Factors Driving Maturation in Human PSC-derived Neurons
驱动人 PSC 衍生神经元成熟的细胞内在和外在因素
- 批准号:
10736603 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Motivated Memory in Aging: Effects of Extrinsic and Intrinsic Rewards on Behavioural and Neural Measures of Memory
衰老过程中的动机性记忆:外在和内在奖励对记忆行为和神经测量的影响
- 批准号:
548064-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Project 3: Analysis of intrinsic and extrinsic factors that promote prostate neuroendocrine differentiation
项目3:促进前列腺神经内分泌分化的内在和外在因素分析
- 批准号:
10612357 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Project 2: Investigating cell intrinsic and extrinsic drivers of prostate cancer bone metastasis
项目2:研究前列腺癌骨转移的细胞内在和外在驱动因素
- 批准号:
10333944 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Project 3: Analysis of intrinsic and extrinsic factors that promote prostate neuroendocrine differentiation
项目3:促进前列腺神经内分泌分化的内在和外在因素分析
- 批准号:
10333945 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: