FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
基本信息
- 批准号:1760538
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As we interact with our environment we constantly assess, measure, and compare the objects within it. Our perception of such objects, either with our eyes, or through the results of scanners, is determined by their shapes, which are themselves characterized by the geometry of their surfaces. We are currently experiencing an explosion of discrete geometric data on shapes of objects obtained from scanners, cameras, imaging systems, sensors, satellites, and even cell phones. There is an urgent need for this geometric data to be processed automatically, for shape matching, shape comparison, and shape recognition. This need arises in areas such as facial recognition, identifying and classifying fossilized bones, distinguishing fractures in bones, diagnosing tumors and anomalies in organs, and measuring changes over time in brain images. Creating a mathematical theory and developing algorithms to recognize and to align such geometric shapes are therefore major research challenges that have far-reaching implications. Deep mathematical theories in geometry and analysis that were developed over the past centuries are now finding applications in this field of shape matching. This project explores fundamental issues in this exciting area, which is on the cusp of seeing major advances. It does so by using the theory of conformal, harmonic, and isometric mappings to align surfaces. While these theories have been extensively studied in a mathematical context, their adaptation to computational algorithms is still under development. This project develops a cohesive and comprehensive theoretical framework for this emerging discipline along with concrete connections to scientific applications. It plans to implement and make publicly available a collection of software that will offer new tools and will open new lines of inquiry to scientists in biology, medicine, anthropology and other fields where the analysis of shape plays a central role.The surfaces in our three-dimensional world can be described mathematically as two-dimensional Riemannian manifolds. Study of the geometric structures on such surfaces is a central topic in mathematical areas such as topology and differential geometry. It leads to classical theories of conformal geometry, moduli spaces, harmonic and conformal maps, and Riemann surfaces. These fields are now being applied to study surfaces of bones, brain cortices, proteins and other bio-molecules. When viewing an object with a laser, or radar, or CAT scan, we obtain a discrete representation of such a surface. Classical theories are inadequate for processing this real world data. This project will develop discrete counterparts of conformal and harmonic maps of surfaces, explore their existence, uniqueness, and diffeomorphism properties, and establish the convergence of the discrete theory to the classical smooth theory. It will also create and implement algorithms that incorporate this theory to create usable software for scientists and other practitioners. In this way, this project will bridge the gap between the mathematical theories of geometry and topology and the application of such ideas to algorithmic analysis of shape data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当我们与环境互动时,我们不断地评估、测量和比较环境中的物体。我们对这些物体的感知,无论是用我们的眼睛,还是通过扫描仪的结果,都是由它们的形状决定的,而这些形状本身又由它们表面的几何形状来表征。 我们目前正在经历一场关于物体形状的离散几何数据的爆炸,这些数据来自扫描仪、相机、成像系统、传感器、卫星甚至手机。有一个迫切的需要,这些几何数据进行自动处理,形状匹配,形状比较,形状识别。这种需求出现在诸如面部识别、识别和分类骨骼、区分骨骼中的骨折、诊断器官中的肿瘤和异常以及测量大脑图像随时间的变化等领域。 因此,创建一个数学理论和开发算法来识别和对齐这些几何形状是具有深远影响的主要研究挑战。在过去的几个世纪里,几何学和分析学中的深层数学理论现在正在形状匹配领域中找到应用。这个项目探讨了这个令人兴奋的领域的基本问题,这是在看到重大进展的尖端。它通过使用共形、调和和等距映射的理论来对齐曲面。虽然这些理论已经在数学背景下被广泛研究,但它们对计算算法的适应仍在发展中。该项目为这一新兴学科发展了一个有凝聚力和全面的理论框架,沿着与科学应用的具体联系。它计划实施并公开一系列软件,这些软件将提供新的工具,并将为生物学、医学、人类学和其他领域的科学家开辟新的研究方向,在这些领域中,形状分析起着核心作用。我们三维世界中的表面可以在数学上描述为二维黎曼流形。研究这类曲面上的几何结构是拓扑学和微分几何等数学领域的一个中心课题。它导致经典理论的共形几何,模空间,调和和共形映射,黎曼曲面。这些领域现在被应用于研究骨骼、大脑皮层、蛋白质和其他生物分子的表面。当用激光、雷达或CAT扫描观察一个物体时,我们得到了这样一个表面的离散表示。经典理论不足以处理这种真实的世界数据。这个项目将开发曲面的共形和调和映射的离散对应物,探索它们的存在性,唯一性和非同构性质,并建立离散理论到经典光滑理论的收敛性。它还将创建和实现结合这一理论的算法,为科学家和其他从业者创建可用的软件。通过这种方式,该项目将弥合几何和拓扑学的数学理论与这些想法在形状数据的算法分析中的应用之间的差距。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Editorial: Mathematical Fundamentals of Machine Learning
社论:机器学习的数学基础
- DOI:10.3389/fams.2021.674785
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:Glickenstein, David;Hamm, Keaton;Huo, Xiaoming;Mei, Yajun;Stoll, Martin
- 通讯作者:Stoll, Martin
Determinant of the Finite Volume Laplacian
- DOI:10.1007/s00454-022-00429-1
- 发表时间:2021-08
- 期刊:
- 影响因子:0.8
- 作者:Thomas Doehrman;David Glickenstein
- 通讯作者:Thomas Doehrman;David Glickenstein
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Glickenstein其他文献
Geometric triangulations and discrete Laplacians on manifolds
- DOI:
- 发表时间:
2005-08 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Ricci flow on three-dimensional, unimodular metric Lie algebras
三维单模度量李代数上的 Ricci 流
- DOI:
10.4310/cag.2010.v18.n5.a3 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein;Tracy L. Payne - 通讯作者:
Tracy L. Payne
A maximum principle for combinatorial Yamabe flow
- DOI:
10.1016/j.top.2005.02.002 - 发表时间:
2002-11 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates
- DOI:
10.2140/gt.2003.7.487 - 发表时间:
2002-11 - 期刊:
- 影响因子:2
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni - 通讯作者:
Lei Ni
David Glickenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Glickenstein', 18)}}的其他基金
Enhancing Pathways to the PhD in the Mathematical Sciences
加强数学科学博士学位的途径
- 批准号:
2130405 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
CAREER: Discrete and Generalized Riemannian Geometry and Curvature Flows
职业:离散和广义黎曼几何和曲率流
- 批准号:
0748283 - 财政年份:2008
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant