CAREER: Discrete and Generalized Riemannian Geometry and Curvature Flows
职业:离散和广义黎曼几何和曲率流
基本信息
- 批准号:0748283
- 负责人:
- 金额:$ 40.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the PI proposes to study discrete geometry, curvature flows, and collapsing solutions to smooth geometric flows. The original motivation for this work is the landmark work on Ricci flow that began with R. Hamilton and includes the solution of the Poincare conjecture by G. Perelman. The PI proposes to work on both combinatorial curvature flows on piecewise linear manifolds and discrete approximations of Ricci flow and other smooth flows. In particular, the PI plans to study discrete flows numerically, to develop visualization techniques for abstract manifolds, to further develop the theory of discrete geometries in the spirit of differential geometry, and to prove convergence of these geometries and related geometric operators to the continuum. The PI also plans to study geometric flows on generalizations of Riemannian manifolds, such as Riemannian groupoids, in order to better understand those flows at singularities. The experimental part of this proposal will be run by a laboratory of undergraduates supervised by graduate students. The recent solution of the Poincare conjecture by G. Perelman both stunned and invigorated the mathematics community. The PI proposes to study similar techniques involving geometric flows in two settings: (1) Discrete Geometries, which may be applied both to other types of geometric questions and to mathematical modelling in a variety of settings, including physics and computer graphics, and (2) Generalized Geometries, which may clarify the implications of Perelman's results and how it may be applied to both mathematical and physical applications. The hope is not only to solve geometric problems, but develop techniques applicable to other areas of science and engineering, both theoretically and computationally. In the process, the PI plans to rely on the laboratory science model to form a group of graduate and undergraduate students developing research tools and presentation tools. The PI hopes to use these tools to communicate the excitement of modern geometry to researchers, teachers, students, and the general public.
在这个项目中,PI建议研究离散几何,曲率流和平滑几何流的折叠解决方案。这项工作的最初动机是从R。汉密尔顿和包括解决庞加莱猜想G.佩雷尔曼PI建议在分段线性流形上的组合曲率流和Ricci流和其他光滑流的离散近似上工作。特别是,PI计划研究离散流数值,开发抽象流形的可视化技术,进一步发展微分几何精神的离散几何理论,并证明这些几何和相关几何算子收敛到连续体。PI还计划研究黎曼流形的推广上的几何流,例如黎曼群胚,以便更好地理解奇点处的几何流。这项建议的实验部分将由一个由研究生监督的本科生实验室管理。 本文给出了G.佩雷尔曼既震惊又震惊了数学界。PI建议在两种设置中研究涉及几何流的类似技术:(1)离散几何,可以应用于其他类型的几何问题和各种设置中的数学建模,包括物理和计算机图形,以及(2)广义几何,可以澄清佩雷尔曼结果的含义以及如何将其应用于数学和物理应用。希望不仅是解决几何问题,但开发适用于其他领域的科学和工程技术,无论是理论上和计算。在这个过程中,PI计划依靠实验室科学模型,形成一组研究生和本科生开发研究工具和演示工具。PI希望利用这些工具向研究人员、教师、学生和公众传达现代几何的兴奋。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Glickenstein其他文献
Geometric triangulations and discrete Laplacians on manifolds
- DOI:
- 发表时间:
2005-08 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Ricci flow on three-dimensional, unimodular metric Lie algebras
三维单模度量李代数上的 Ricci 流
- DOI:
10.4310/cag.2010.v18.n5.a3 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein;Tracy L. Payne - 通讯作者:
Tracy L. Payne
A maximum principle for combinatorial Yamabe flow
- DOI:
10.1016/j.top.2005.02.002 - 发表时间:
2002-11 - 期刊:
- 影响因子:0
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates
- DOI:
10.2140/gt.2003.7.487 - 发表时间:
2002-11 - 期刊:
- 影响因子:2
- 作者:
David Glickenstein - 通讯作者:
David Glickenstein
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni - 通讯作者:
Lei Ni
David Glickenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Glickenstein', 18)}}的其他基金
Enhancing Pathways to the PhD in the Mathematical Sciences
加强数学科学博士学位的途径
- 批准号:
2130405 - 财政年份:2022
- 资助金额:
$ 40.17万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760538 - 财政年份:2018
- 资助金额:
$ 40.17万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 40.17万 - 项目类别:
Standard Grant