RAPID: Collaborative: Data Driven Post-Disaster Waste and Debris Volume Predictions using Smartphone Photogrammetry App and Unmanned Aerial Vehicles
RAPID:协作:使用智能手机摄影测量应用程序和无人机进行数据驱动的灾后废物和碎片体积预测
基本信息
- 批准号:1760718
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this proposal is to leverage photogrammetry from smart phones and unmanned aerial vehicles (UAVs) to automate the quantification of waste debris. In the aftermath of Hurricane Harvey and associated rainfall-induced flooding, a significant volume of waste and debris will be generated, especially in urban areas such as Houston and Beaumont, Texas. The management of post-disaster debris is an important issue faced by local and federal authorities: it contributes a significant portion of disaster management costs, can generate several times the annual waste generation rates of the affected community, and leads to higher expenditures due to error prone initial debris estimations. The current process to predict debris volume is inaccurate and inefficient, as it utilizes qualitative data from visual observation. The results of this study will improve the calibration of the flood debris estimation models by measuring debris generation due to Hurricane Harvey. This will aid in decision-making tools that ultimately will result in faster and more cost-effective debris management operations for future rainfall, tropical storm, and hurricane-induced flood events that continue to impact the Gulf, the US, and elsewhere around the world.This RAPID project addresses the lack of post-disaster debris volume dataset by collecting ephemeral data through an automated smartphone photogrammetric app and UAV in Beaumont and other affected regions in Texas, and making the data available through open-source cyber-infrastructure databases. Debris volumes will be quantified by exploring the use of smartphones to automate the quantification of waste debris. In particular, smart phone images captured by the monitor, resident, or local government agency can be processed and scaled to develop a 3-D rendition and an estimate of waste volumes. These estimations will be validated using an unmanned aerial vehicle (UAV) photogrammetry surveys and which in turn can be converted using volumetric studies as well as other available debris volumes documented by monitoring companies. If successful, smartphones and UAVs can be quickly used in future natural disasters to analyze and characterize the digital images and then accurately quantify waste debris volumes.
该提案的目标是利用智能手机和无人驾驶飞行器(UAV)的摄影测量来自动量化废物碎片。在飓风哈维和相关的飓风引发的洪水之后,将产生大量的废物和碎片,特别是在德克萨斯州的休斯顿和博蒙等城市地区。灾后碎片的管理是地方和联邦当局面临的一个重要问题:它占灾害管理费用的很大一部分,可产生数倍于受灾社区年废物产生率的废物,并由于对碎片的初步估计容易出错而导致支出增加。目前预测碎片体积的程序既不准确,效率也不高,因为它利用的是目视观察的定性数据。这项研究的结果将通过测量哈维飓风产生的碎片来改进洪水碎片估计模型的校准。这将有助于决策工具,最终将导致更快,更具成本效益的碎片管理操作,以应对未来继续影响墨西哥湾,美国,这个快速项目解决了缺乏后-灾难碎片体积数据集,通过自动智能手机摄影测量应用程序和无人机在德克萨斯州的博蒙和其他受影响地区收集短暂数据,并通过开源网络基础设施数据库提供数据。将通过探索使用智能手机自动量化废物碎片来量化碎片量。特别地,由监视器、居民或当地政府机构捕获的智能手机图像可以被处理和缩放以开发3D再现和废物量的估计。这些估计将使用无人驾驶航空器摄影测量调查加以验证,而摄影测量调查又可以使用体积研究以及监测公司记录的其他现有碎片体积进行换算。如果成功,智能手机和无人机可以在未来的自然灾害中快速使用,以分析和描述数字图像,然后准确地量化废物碎片的数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Navid Jafari其他文献
Sedimentary Processes and Instability on the Mississippi River Delta Front near the Shipwreck of the SS Virginia
弗吉尼亚号沉船附近密西西比河三角洲前缘的沉积过程和不稳定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Nathan Figueredo;S. Bentley;J. Chaytor;Kehui Xu;Navid Jafari;I. Georgiou;M. Damour;Jeffrey Duxbury;J. Obelcz;Jillian Maloney - 通讯作者:
Jillian Maloney
Spatial and temporal variations of seabed sediment characteristics in the inner Louisiana shelf
- DOI:
10.1016/j.margeo.2023.107115 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Wenqiang Zhang;Kehui Xu;Colin Herke;Omar Alawneh;Navid Jafari;Kanchan Maiti;Patrick O. Clower;Cassandra N. Glaspie;Jillian C. Tupitza;Z. George Xue - 通讯作者:
Z. George Xue
Navid Jafari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Navid Jafari', 18)}}的其他基金
I-Corps: X-Roots X-ray Computed Tomography Scans of Belowground Root Systems
I-Corps:X-Roots 地下根系的 X 射线计算机断层扫描
- 批准号:
2344852 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
- 批准号:
2139883 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID: Quantifying Wetland Root Structure, Strength, and Uprooting due to Hurricane Ida
RAPID:量化飓风艾达造成的湿地根系结构、强度和连根拔起
- 批准号:
2202313 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
IUCRC Planning Grant Louisiana State University: Center for Coastal Deltaic Innovation, Research, & Technology (CDIRT)
IUCRC 规划拨款 路易斯安那州立大学:沿海三角洲创新、研究中心
- 批准号:
2113843 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Data Mining and Fusion Between Unmanned Aerial Systems and Social Media Technologies to Improve Emergency Operations
RAPID:协作研究:无人机系统和社交媒体技术之间的数据挖掘和融合,以改善紧急行动
- 批准号:
1945787 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID: Fast Reconstruction of Flood Hydrographs in the Houston Metropolitan Area during Hurricane Harvey Based on Image Processing and In-situ Measurements
RAPID:基于图像处理和现场测量快速重建飓风“哈维”期间休斯顿都会区洪水过程线
- 批准号:
1760582 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
相似海外基金
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
- 批准号:
2330152 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
POSE: Phase II: An Open Source Ecosystem for Collaborative Rapid Design of Edge AI Hardware Accelerators for Integrated Data Analysis and Discovery
POSE:第二阶段:用于协作快速设计边缘人工智能硬件加速器以进行集成数据分析和发现的开源生态系统
- 批准号:
2303700 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316654 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
- 批准号:
2330153 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant