Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
基本信息
- 批准号:2319371
- 负责人:
- 金额:$ 13.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project aims to develop and apply tools coming from algebra to identify attacks embedded within legitimate communications streams and online fora. The research will enhance statistical methods and Artificial Intelligence to detect and combat threats. Specifically, the research will work with unlabeled data and will be applicable in environments that cannot support learning on training data, such as new domains or previously unseen threats. The project will provide training opportunities for both undergraduate and graduate students, preparing them for their future careers in STEM fields. The research on detecting outliers in data, recovering missing data, and detecting hidden constraints will have many applications across the sciences.The project aims to design a self-adaptive linear-time algorithm to separate signals, find hidden constraint equations, and detect similarities in high-dimensional data (tensors). This collaborative research of the three investigators and student participants will focus on three independent tasks. The first will extend signal separation and outlier prediction to a continuous spectrum. The second will refactor algebraic structures into tensor networks for uniform algorithms. The third will devise faster (linear-time) solutions to matrix systems to enhance practical range. Analysis of high-dimensional data often runs afoul of the curse of dimensionality: as the number of independent parameters increases, the time needed to search neighbors grows exponentially. Also, the meaning of outlier becomes blurred as notions of far apart and close together are less distinguishable, and traditional statistics tend to identify large subspaces. The new algebraic markers will detect structure in any dimension and be quickly computable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发和应用来自代数的工具,以识别嵌入在合法通信流和在线论坛中的攻击。该研究将加强统计方法和人工智能,以检测和打击威胁。具体而言,该研究将使用未标记的数据,并将适用于无法支持对训练数据进行学习的环境,例如新领域或以前未见过的威胁。该项目将为本科生和研究生提供培训机会,为他们未来在STEM领域的职业生涯做好准备。检测数据中的异常值、恢复缺失数据和检测隐藏约束的研究将在各个科学领域有许多应用。该项目旨在设计一种自适应线性时间算法来分离信号、发现隐藏约束方程并检测高维数据中的相似性(张量)。这三名研究人员和学生参与者的合作研究将集中在三个独立的任务。第一个将扩展信号分离和离群值预测的连续频谱。第二部分将把代数结构重构为张量网络,以实现统一算法。第三个将设计更快的(线性时间)解决方案,以矩阵系统,以提高实用范围。高维数据的分析经常与维数灾难相冲突:随着独立参数数量的增加,搜索邻居所需的时间呈指数级增长。此外,离群值的含义变得模糊,因为远距离和近距离的概念难以区分,并且传统统计倾向于识别大型子空间。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Kassabov其他文献
Universal lattices and property tau
- DOI:
10.1007/s00222-005-0498-0 - 发表时间:
2006-03-14 - 期刊:
- 影响因子:3.600
- 作者:
Martin Kassabov;Nikolay Nikolov - 通讯作者:
Nikolay Nikolov
Martin Kassabov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Kassabov', 18)}}的其他基金
Representation Theory of Groups and Applications
群表示论及其应用
- 批准号:
1601406 - 财政年份:2016
- 资助金额:
$ 13.88万 - 项目类别:
Continuing Grant
Representation Theory of Groups and Applications
群表示论及其应用
- 批准号:
1303117 - 财政年份:2013
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Properties T, Tau and pro-finite groups
T、Tau 和亲有限群的性质
- 批准号:
0900932 - 财政年份:2009
- 资助金额:
$ 13.88万 - 项目类别:
Continuing Grant
Properties T, Tau and Kazhdan constants
属性 T、Tau 和 Kazhdan 常数
- 批准号:
0600244 - 财政年份:2006
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
- 批准号:
2317397 - 财政年份:2023
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant