Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics

更好的多铁性分子自旋电子学的异分子界面设计

基本信息

  • 批准号:
    2317464
  • 负责人:
  • 金额:
    $ 56.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-technical DescriptionThere is a growing demand for computer memory across the U.S and elsewhere in the world. Unfortunately, the energy cost associated with the fabrication and use of computer memory is growing at a rate that is ultimately unsustainable. At the current growth rates, in two decades the energy cost for memory will exceed the world's energy production if there is no change in technology. What is needed to avert a crisis are new technologies that support the growing need for more computer memory, but use far less energy, occupies less space and is both reliable and inexpensive. The main goal of this research is to develop a highly stable memory device, with a size that is 10,000 smaller than the width of a human hair, based on a class of molecules whose state can be electrically controlled. These devices will be made from molecules that can be switched with a small voltage. The advantage is that this will be high quality memory that is fast, requires little power, and is inexpensive to make yet very robust. The development of this memory technology will have a significant impact on various applications, including helping computers run faster and more efficiently and may address the growing problem of the increasing energy consumption posed by data centers that are appearing across the U.S. New understanding must be developed if these devices are to be competitive and easily implemented. The research and education activities of this project are closely intertwined. The research activities will provide valuable learning experiences for graduate students, undergraduate students, and even K-12 students. Students from underrepresented groups in STEM fields are also a key focus.Technical DescriptionThe focus of this research is on developing a better understanding of how to design molecular based voltage-controlled devices whose performance competes or even surpasses the performance of silicon semiconductor devices. By studying how to use a local electric field to control the molecular magnetic properties and further manipulate the conductance of the molecular system new insights in molecular electronics are developed. Not only can the quantum states of the molecule be characterized by a combination of spectroscopies, but a better understanding of the key physics can be developed by characterizing prototype molecular transistors. The interface between a molecular ferroelectric, a material with a switchable electric dipole, and a spin crossover molecular film, molecules which can switch from magnetic to non-magnetic seems key, but the interactions in play at this interface need to be understood if better devices are to be fabricated 'by design'. The combination of molecular systems will be characterized by a variety of spectroscopic techniques and through the study of test prototype devices to determine spin state, electric dipole, as well as to investigate the relationship between magnetic moment and electric dipole. Additionally, this research team believes that the creation of a molecular phototransistor sensitive to light color and polarization is realizable. The key goals are: (1) To determine why voltage-controlled switching is not simply restricted to the interface. (2) To identify the energy barriers to spin state switching and the origin of these energy barriers. (3) To ascertain the effects of changing temperatures on the molecular spin state. (4) To make a phototransistor and probe the characteristics of the photocarriers. (5) To investigate the details of the molecular electronics for both the high and low spin states. This last goal connects the quantum state of the molecule with the transistor properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述是对整个美国和世界其他地方的计算机记忆的需求不断增长。不幸的是,与计算机记忆的制造和使用相关的能源成本正在以最终不可持续的速度增长。在目前的增长速度下,如果技术没有变化,记忆的能源成本将超过世界的能源生产。避免危机所需的是支持日益增长的计算机记忆需求,但使用较少的能量,占用更少的空间,既可靠又便宜的新技术。这项研究的主要目的是开发一种高度稳定的记忆设备,其大小比人毛的宽度小10,000,基于一类可以通过电气控制状态的分子。这些设备将由可以用少量电压切换的分子制成。优点是,这将是快速的高质量记忆,几乎不需要功率,而且便宜地使其变得非常健壮。该内存技术的开发将对各种应用产生重大影响,包括帮助计算机运行速度更快,更有效,并可能解决了在美国在美国中出现的数据中心不断增长的能源消耗的日益增长的问题,如果这些设备具有竞争力并易于实施,则必须开发出新的新理解。该项目的研究和教育活动紧密相互交织。研究活动将为研究生,本科生甚至K-12学生提供宝贵的学习经验。来自STEM领域中代表性不足的群体的学生也是一个关键重点。技术描述这项研究的重点是对如何设计基于分子的电压控制设备进行更好的了解,其性能竞争甚至超过了硅半导体设备的性能。通过研究如何使用局部电场来控制分子磁性能并进一步操纵分子系统在分子电子中的新见解。分子的量子状态不仅可以通过光谱镜的组合来表征,而且可以通过表征原型分子晶体管来更好地理解关键物理。分子铁电,带有可开关电偶极子的材料和自旋跨界分子膜之间的界面,可以从磁性转换为非磁性的分子似乎是关键的,但是如果要通过设计构成更好的设备,则需要理解该界面处的相互作用。分子系统的组合将以各种光谱技术以及测试原型设备的研究来确定旋转状态,电偶极子以及研究磁矩和电偶极子之间的关系。此外,该研究小组认为,对浅色和极化敏感的分子光晶体管的创建是可以实现的。关键目标是:(1)确定为什么电压控制开关不仅限于接口。 (2)确定旋转状态切换的能源障碍和这些能屏障的起源。 (3)确定温度变化对分子自旋态的影响。 (4)制作光晶体管并探测光载体的特征。 (5)研究高自旋状态和低自旋状态的分子电子产品的细节。这个最后的目标将分子的量子状态与晶体管属性联系起来。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被视为值得通过评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Dowben其他文献

Peter Dowben的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Dowben', 18)}}的其他基金

Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
  • 批准号:
    2003057
  • 财政年份:
    2020
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Continuing Grant
Molecular Spintronics: Building the better Molecular Multiferroic from the Interface Outwards
分子自旋电子学:从界面向外构建更好的分子多铁性
  • 批准号:
    1856614
  • 财政年份:
    2019
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Antiferromagnetic Magneto-electric Memory and Logic
E2CDA:I 型:反铁磁磁电存储器和逻辑
  • 批准号:
    1740136
  • 财政年份:
    2017
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Continuing Grant
Spin and Dipole Ordering at Molecular Film Interfaces
分子膜界面的自旋和偶极排序
  • 批准号:
    1565692
  • 财政年份:
    2016
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Without Spin Injection
合作研究:无需自旋注入的自旋电子学
  • 批准号:
    1508541
  • 财政年份:
    2015
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant
Polymer Interface Induced Spin and Dipole Ordering
聚合物界面诱导自旋和偶极子排序
  • 批准号:
    0909580
  • 财政年份:
    2009
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant
The Surface Chemistry of Adsorbates on Crystalline Polymers
结晶聚合物吸附物的表面化学
  • 批准号:
    0415421
  • 财政年份:
    2004
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Continuing Grant
The Metal-Nonmetal Transition in Magnetic Local Moment Systems
局部磁矩系统中的金属-非金属转变
  • 批准号:
    9802126
  • 财政年份:
    1998
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Continuing Grant
Upgrade of a Synchrotron Radiation Beamline for Surface Chemistry
用于表面化学的同步辐射束线升级
  • 批准号:
    9808022
  • 财政年份:
    1998
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant
Development of a Spin Polarized Inverse Photoemission Spectrometer
自旋偏振逆光电发射光谱仪的研制
  • 批准号:
    9407933
  • 财政年份:
    1994
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Standard Grant

相似国自然基金

基于双草酸硼酸锂的锂金属电池无氟电解液设计及界面调控机制研究
  • 批准号:
    22308003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向致密锂硫电池的宿主尺度与界面层次化设计及其催化机制研究
  • 批准号:
    52301282
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
增强型负热膨胀材料设计与轻质零热膨胀铝基复合材料的制备及界面结构研究
  • 批准号:
    12374032
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
超支化离子液体改性木塑衣架复合材料的界面设计、性能调控与机理研究
  • 批准号:
    52363014
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
  • 批准号:
    2338917
  • 财政年份:
    2024
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Continuing Grant
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
  • 批准号:
    23K04652
  • 财政年份:
    2023
  • 资助金额:
    $ 56.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advancing Medical Illustration in Patient Education Materials: from Art to Science
推进患者教育材料中的医学插图:从艺术到科学
  • 批准号:
    10660634
  • 财政年份:
    2023
  • 资助金额:
    $ 56.37万
  • 项目类别:
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 56.37万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 56.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了