Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
基本信息
- 批准号:2317464
- 负责人:
- 金额:$ 56.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionThere is a growing demand for computer memory across the U.S and elsewhere in the world. Unfortunately, the energy cost associated with the fabrication and use of computer memory is growing at a rate that is ultimately unsustainable. At the current growth rates, in two decades the energy cost for memory will exceed the world's energy production if there is no change in technology. What is needed to avert a crisis are new technologies that support the growing need for more computer memory, but use far less energy, occupies less space and is both reliable and inexpensive. The main goal of this research is to develop a highly stable memory device, with a size that is 10,000 smaller than the width of a human hair, based on a class of molecules whose state can be electrically controlled. These devices will be made from molecules that can be switched with a small voltage. The advantage is that this will be high quality memory that is fast, requires little power, and is inexpensive to make yet very robust. The development of this memory technology will have a significant impact on various applications, including helping computers run faster and more efficiently and may address the growing problem of the increasing energy consumption posed by data centers that are appearing across the U.S. New understanding must be developed if these devices are to be competitive and easily implemented. The research and education activities of this project are closely intertwined. The research activities will provide valuable learning experiences for graduate students, undergraduate students, and even K-12 students. Students from underrepresented groups in STEM fields are also a key focus.Technical DescriptionThe focus of this research is on developing a better understanding of how to design molecular based voltage-controlled devices whose performance competes or even surpasses the performance of silicon semiconductor devices. By studying how to use a local electric field to control the molecular magnetic properties and further manipulate the conductance of the molecular system new insights in molecular electronics are developed. Not only can the quantum states of the molecule be characterized by a combination of spectroscopies, but a better understanding of the key physics can be developed by characterizing prototype molecular transistors. The interface between a molecular ferroelectric, a material with a switchable electric dipole, and a spin crossover molecular film, molecules which can switch from magnetic to non-magnetic seems key, but the interactions in play at this interface need to be understood if better devices are to be fabricated 'by design'. The combination of molecular systems will be characterized by a variety of spectroscopic techniques and through the study of test prototype devices to determine spin state, electric dipole, as well as to investigate the relationship between magnetic moment and electric dipole. Additionally, this research team believes that the creation of a molecular phototransistor sensitive to light color and polarization is realizable. The key goals are: (1) To determine why voltage-controlled switching is not simply restricted to the interface. (2) To identify the energy barriers to spin state switching and the origin of these energy barriers. (3) To ascertain the effects of changing temperatures on the molecular spin state. (4) To make a phototransistor and probe the characteristics of the photocarriers. (5) To investigate the details of the molecular electronics for both the high and low spin states. This last goal connects the quantum state of the molecule with the transistor properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述在美国和世界其他地方,对计算机内存的需求不断增长。不幸的是,与计算机存储器的制造和使用相关的能源成本正在以最终不可持续的速度增长。按照目前的增长速度,如果技术不发生变化,20年后存储器的能源成本将超过世界能源生产。要避免危机,需要新技术来支持对更多计算机内存的日益增长的需求,但使用更少的能源,占用更少的空间,并且可靠和廉价。这项研究的主要目标是开发一种高度稳定的存储设备,其尺寸比人类头发的宽度小10,000倍,基于一类状态可以电控的分子。这些设备将由可以用小电压切换的分子制成。优点是这将是高质量的存储器,其速度快,需要很少的功率,并且制造成本低,但非常坚固。这种内存技术的发展将对各种应用产生重大影响,包括帮助计算机更快,更有效地运行,并可能解决美国各地出现的数据中心所带来的日益增长的能源消耗问题。该项目的研究和教育活动密切相关。研究活动将为研究生,本科生,甚至K-12学生提供宝贵的学习经验。来自STEM领域代表性不足的群体的学生也是一个关键的焦点。技术说明本研究的重点是更好地理解如何设计基于分子的电压控制器件,其性能竞争甚至超过硅半导体器件的性能。通过研究如何利用局域电场来控制分子的磁性,进而操纵分子系统的电导,发展了分子电子学的新见解。不仅可以通过光谱的组合来表征分子的量子态,而且可以通过表征原型分子晶体管来更好地理解关键物理学。分子铁电体(一种具有可切换电偶极的材料)和自旋交叉分子膜(可以从磁性切换到非磁性的分子)之间的界面似乎很关键,但如果要“通过设计”制造更好的器件,则需要了解在该界面处起作用的相互作用。分子系统的组合将通过各种光谱技术表征,并通过对测试原型器件的研究来确定自旋状态、电偶极子,以及考察磁矩与电偶极子之间的关系。此外,该研究小组认为,创造一种对光的颜色和偏振敏感的分子光电晶体管是可以实现的。主要目标是:(1)确定为什么电压控制开关不仅仅局限于接口。(2)确定自旋态转换的能垒及其来源。(3)确定温度变化对分子自旋状态的影响。(4)制作光电晶体管并探讨其光生载流子特性。(5)研究高自旋态和低自旋态的分子电子学细节。最后一个目标是将分子的量子态与晶体管特性联系起来。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Dowben其他文献
Peter Dowben的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Dowben', 18)}}的其他基金
Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
- 批准号:
2003057 - 财政年份:2020
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
Molecular Spintronics: Building the better Molecular Multiferroic from the Interface Outwards
分子自旋电子学:从界面向外构建更好的分子多铁性
- 批准号:
1856614 - 财政年份:2019
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
E2CDA: Type I: Antiferromagnetic Magneto-electric Memory and Logic
E2CDA:I 型:反铁磁磁电存储器和逻辑
- 批准号:
1740136 - 财政年份:2017
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
Spin and Dipole Ordering at Molecular Film Interfaces
分子膜界面的自旋和偶极排序
- 批准号:
1565692 - 财政年份:2016
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Without Spin Injection
合作研究:无需自旋注入的自旋电子学
- 批准号:
1508541 - 财政年份:2015
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
Polymer Interface Induced Spin and Dipole Ordering
聚合物界面诱导自旋和偶极子排序
- 批准号:
0909580 - 财政年份:2009
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
The Surface Chemistry of Adsorbates on Crystalline Polymers
结晶聚合物吸附物的表面化学
- 批准号:
0415421 - 财政年份:2004
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
The Metal-Nonmetal Transition in Magnetic Local Moment Systems
局部磁矩系统中的金属-非金属转变
- 批准号:
9802126 - 财政年份:1998
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
Upgrade of a Synchrotron Radiation Beamline for Surface Chemistry
用于表面化学的同步辐射束线升级
- 批准号:
9808022 - 财政年份:1998
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
Development of a Spin Polarized Inverse Photoemission Spectrometer
自旋偏振逆光电发射光谱仪的研制
- 批准号:
9407933 - 财政年份:1994
- 资助金额:
$ 56.37万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
- 批准号:
2338917 - 财政年份:2024
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
A portable skin deformation measurement platform for user-specific wearable interface design (U-WEAR)
用于用户特定可穿戴界面设计的便携式皮肤变形测量平台(U-WEAR)
- 批准号:
EP/X037916/1 - 财政年份:2023
- 资助金额:
$ 56.37万 - 项目类别:
Research Grant
Development of a Design Support Environment for Interface Circuits Between Synchronous and Asynchronous Circuits
同步与异步电路之间的接口电路设计支持环境的开发
- 批准号:
23K16860 - 财政年份:2023
- 资助金额:
$ 56.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solid-State Battery Interface Design (SS-BID)
固态电池接口设计(SS-BID)
- 批准号:
DP230100429 - 财政年份:2023
- 资助金额:
$ 56.37万 - 项目类别:
Discovery Projects
Eco-Friendly Natural Basalt FRP for External Strengthening of Concrete Structures: Development of Constitutive Bond-Slip Laws and Design Models for Basalt FRP/Concrete Interface
用于混凝土结构外部加固的环保天然玄武岩 FRP:玄武岩 FRP/混凝土界面本构粘结滑移定律和设计模型的发展
- 批准号:
RGPIN-2022-03592 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Discovery Grants Program - Individual
Material/Process design based on dynamic interface control of nanomaterials in hydrothermal condition
基于水热条件下纳米材料动态界面控制的材料/工艺设计
- 批准号:
22H01845 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanism and design of a pH sensor at the organelle-cytoskeleton interface
细胞器-细胞骨架界面pH传感器的机理和设计
- 批准号:
BB/W005581/1 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Research Grant
Eco-Friendly Natural Basalt FRP for External Strengthening of Concrete Structures: Development of Constitutive Bond-Slip Laws and Design Models for Basalt FRP/Concrete Interface
用于混凝土结构外部加固的环保天然玄武岩 FRP:玄武岩 FRP/混凝土界面本构粘结滑移定律和设计模型的发展
- 批准号:
DGECR-2022-00481 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Discovery Launch Supplement
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
- 批准号:
2118673 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Continuing Grant
Research on interface design to promote the acquisition of a novel human reading skill
促进人类新阅读技能习得的界面设计研究
- 批准号:
22K12704 - 财政年份:2022
- 资助金额:
$ 56.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




