Concurrent Enhancement of Fatigue Life and Corrosion Resistance via Laser Shock Peening

通过激光冲击强化同时提高疲劳寿命和耐腐蚀性

基本信息

  • 批准号:
    1761344
  • 负责人:
  • 金额:
    $ 36.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This research project addresses the fundamental science associated with surface deformations induced by laser shock peening (LSP), and their use to improve the stress corrosion cracking (SCC) resistance of metallic components in addition to LSP's well-known effect on fatigue life. SCC is a phenomenon where the combination of a tensile load in a corrosive environment causes premature failure. This failure is often sudden, catastrophic and occurs at loading levels far below a material's yield strength, making it difficult to predict. Depending on the material and environment, SCC can occur through different mechanisms, thus there is a need to identify mitigation approaches. Shockwaves generated on the surface using LSP impart compressive residual stresses, without thermal effects, and have traditionally been used to improve the material's fatigue life. They also induce other changes at the microstructural level, which may help mitigate SCC concurrently. Improving material performance will enhance the capability of existing technologies, potentially by allowing them to operate at higher tensile loads for longer times. In addition, the surface treatment methodology can be applied to different materials and geometric configurations, thus providing effective solutions for many industries ranging from nuclear reactors to oil production to medical devices. As such, the research has significant breadth and directly and positively impacts economic welfare and national security. By networking with minority groups such as National Society of Black Engineers, underrepresented students will be recruited. High school students and STEM teachers from neighborhood schools in northern Manhattan and the Bronx will be engaged in an innovative combination of "reach out" and "let in" activities.This project will set forth the mechanisms that allow deformation processes to have stress corrosion cracking (SCC) mitigation benefits. Fundamental understanding of the interaction between the shockwave-induced microstructural changes and the SCC pathways will be developed. Hydrogen has been identified as a major component driving SCC, and thus entry of hydrogen into the surface and propagation of absorbed hydrogen within the lattice will be better understood. Movement of mobile dislocations can contribute to crack propagation. Both of these components will be influenced by dislocation cell structures formed during shockwave processing. In addition, the electrochemical effects of the deformation process on SCC and their mitigation will be studies in a fundamental approach. Finally the project will perform scientific investigation into the balance between LSP's effect on fatigue life and SCC resistance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目涉及激光冲击喷丸(LSP)引起的表面变形的相关基础科学,以及它们在提高金属部件的抗应力腐蚀破裂(SCC)方面的应用,以及LSP对疲劳寿命的众所周知的影响。应力腐蚀开裂是指在腐蚀性环境中,拉伸载荷的组合导致过早失效的现象。这种失效通常是突然的、灾难性的,并且发生在远低于材料屈服强度的加载水平,因此很难预测。根据材料和环境的不同,应力腐蚀可以通过不同的机制发生,因此需要确定缓解方法。使用LSP在表面产生的冲击波产生压缩残余应力,没有热效应,传统上被用来提高材料的疲劳寿命。它们还在微观结构水平上引发其他变化,这可能有助于同时缓解SCC。材料性能的改进将增强现有技术的能力,潜在地允许它们在更高的拉伸载荷下运行更长时间。此外,表面处理方法可以应用于不同的材料和几何构型,从而为从核反应堆到石油生产再到医疗器械的许多行业提供有效的解决方案。因此,这项研究具有重大的广度,并直接和积极地影响经济福利和国家安全。通过与全国黑人工程师协会等少数群体建立联系,将招收代表人数不足的学生。来自曼哈顿北部和布朗克斯区社区学校的高中生和STEM教师将参与一项创新的组合活动,即“向外伸展”和“向内伸展”。该项目将阐述允许变形过程具有缓解应力腐蚀开裂(SCC)益处的机制。我们将对冲击波引起的微结构变化和SCC途径之间的相互作用有一个基本的了解。氢已被确定为驱动应力腐蚀开裂的主要成分,因此将更好地理解氢进入表面和吸收的氢在晶格内的传播。移动位错的运动有助于裂纹的扩展。这两种成分都会受到冲击波处理过程中形成的位错晶胞结构的影响。此外,将从根本上研究变形过程对应力腐蚀开裂的电化学影响及其缓解。最后,该项目将对LSP对疲劳寿命的影响和抗SCC性能之间的平衡进行科学调查。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of brass composition and phases on stress corrosion mitigation by laser shock peening
  • DOI:
    10.1016/j.mfglet.2019.11.003
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    N. Lisenko;Connor Evans;Y. Yao
  • 通讯作者:
    N. Lisenko;Connor Evans;Y. Yao
The Effect of Laser Shock Peening on Back Stress of Additively Manufactured Stainless Steel Parts
激光冲击强化对增材制造不锈钢零件背应力的影响
Laser Shock Peening Induced Back Stress Mitigation in Rolled Stainless Steel
激光冲击强化轧制不锈钢中引起的背应力减轻
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Y Lawrence Yao其他文献

Y Lawrence Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Y Lawrence Yao', 18)}}的其他基金

GOALI: Laser Forming of Metal Foam with Controlled Dimensional and Mechanical Properties
GOALI:具有受控尺寸和机械性能的金属泡沫激光成型
  • 批准号:
    1725980
  • 财政年份:
    2017
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
GOALI: Inter-Laminar Toughening of Composite Structures: Bonding Mechanisms and Delamination Resistance
目标:复合结构的层间增韧:粘合机制和抗分层性
  • 批准号:
    1363328
  • 财政年份:
    2014
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
GOALI: Laser Scribing of Multilayer Thin Films in Solar Cells: Defect Formation and Mitigation
GOALI:太阳能电池中多层薄膜的激光划片:缺陷形成和缓解
  • 批准号:
    1333241
  • 财政年份:
    2013
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
GOALI: Dissimilar Metal Joining for Micro-Scale Medical Devices
GOALI:微型医疗器械的异种金属连接
  • 批准号:
    1130564
  • 财政年份:
    2011
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
Laser Modification of Surface Crystallinity of Biodegradable Polymers
生物可降解聚合物表面结晶度的激光改性
  • 批准号:
    1030536
  • 财政年份:
    2010
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
EAGER: Transmission Welding and Single-Step Channeling of Transparent Materials by Ultrafast Laser
EAGER:超快激光透明材料的透射焊接和单步通道
  • 批准号:
    0936171
  • 财政年份:
    2009
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
Planning Grant Proposal: I/UCRC in Lasers and Plasmas for Advanced Manufacturing
规划拨款提案:I/UCRC 在先进制造激光和等离子体领域的应用
  • 批准号:
    0630297
  • 财政年份:
    2006
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
Laser Peen Bending: Simultaneous Shaping and Property Enhancement
激光喷丸弯曲:同时成形和性能增强
  • 批准号:
    0620741
  • 财政年份:
    2006
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
3D Laser Forming of Doubly Curved Shapes: Process Prediction and Synthesis
双曲面形状的 3D 激光成型:过程预测和合成
  • 批准号:
    0355432
  • 财政年份:
    2004
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Continuing Grant
Micro-Scale Laser Shock Processing with Controlled Mechanical Properties, Microstructure and Fatigue Performance
具有受控机械性能、微观结构和疲劳性能的微尺度激光冲击加工
  • 批准号:
    0200334
  • 财政年份:
    2002
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant

相似海外基金

Significant Enhancement of Structural Integrity of Shape Memory Ceramics in High Cycle Fatigue
形状记忆陶瓷在高周疲劳中的结构完整性显着增强
  • 批准号:
    2054274
  • 财政年份:
    2021
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Continuing Grant
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
  • 批准号:
    2015750
  • 财政年份:
    2020
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
Performance Assessment of a new Ceramic Medium for Use in an Improved Aircraft Structures Shot-Peening Process: Evaluation of Fatigue Life Enhancement****
用于改进飞机结构喷丸工艺的新型陶瓷介质的性能评估:疲劳寿命增强评估****
  • 批准号:
    536373-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Engage Grants Program
Fatigue structural testing enhancement research
疲劳结构测试强化研究
  • 批准号:
    528467-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Enhancement of the fatigue limit at HCF- and VHCF-loadings with the help of thermomechanical treatment at the temperature of maximum dynamic strain ageing
借助最大动态应变时效温度下的热机械处理,提高 HCF 和 VHCF 负载下的疲劳极限
  • 批准号:
    408139037
  • 财政年份:
    2018
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Research Grants
Confirmatory experiments on enhancement of fatigue lives for development of portable laser-peening system
开发便携式激光喷丸系统提高疲劳寿命的验证性实验
  • 批准号:
    26420468
  • 财政年份:
    2014
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of fatigue properties of Al-Mg and Al-Mg-Si alloys at elevated temperatures by addition of small amount of Scandium
添加少量钪提高Al-Mg和Al-Mg-Si合金的高温疲劳性能
  • 批准号:
    19760063
  • 财政年份:
    2007
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Enhancement of Strength and Fatigue Properties of Pure Titanium via Optimized ECAP Processing
通过优化 ECAP 工艺提高纯钛的强度和疲劳性能
  • 批准号:
    17560620
  • 财政年份:
    2005
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of Fatigue Damage due to Environmental Variation and its Recovery Treatment
环境变化引起的疲劳损伤的加剧及其恢复处理
  • 批准号:
    13450262
  • 财政年份:
    2001
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research Initiation Award: Fatigue Wear, Material Transfer, and Surface Enhancement of Polymers and Polymer Composites
研究启动奖:聚合物和聚合物复合材料的疲劳磨损、材料转移和表面增强
  • 批准号:
    9009642
  • 财政年份:
    1990
  • 资助金额:
    $ 36.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了