Enhancement of Strength and Fatigue Properties of Pure Titanium via Optimized ECAP Processing
通过优化 ECAP 工艺提高纯钛的强度和疲劳性能
基本信息
- 批准号:17560620
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pure Titanium with the monotonic strength exceeding 1 GPa has been manufactured via multi-pass ECAP followed by forging and drawing. The role of processing factors such as ECAP route, number of passes and post-ECAP annealing on the structure and resultant mechanical properties and, particularly, in fatigue of metals and alloys has been investigated. The structure of ECAP-produced materials has been assessed by means of TEM and EBSD and X-ray analysis. It was shown that the structure difference between the samples produced by deifferent routes diminishes with increasing number of pressings. The processing route exerts little or no effect on both low-and high-cyclic fatigue properties, while the effect on the grain shape is very strong. Therefore, route A (no rotation of the working billet between subsequent passes) can be recommended for practical implementation. During severe plastic deformation to the effective strain of 8-30, the grain size is reduced to nanoscopic scale of 150-300 nm and the fraction of hghangle grain boundaries reaches of 65%, depending on the material, amount of imposed strain (number of ECAP pressings) and post-ECAP annealing. The improvement of fatigue properties in the high cycle regime has been demonstrated for many materials. For pure titanium the fatigue limit has reached 550 MPa after optimized severe plastic deformation processing and can be further improved by annealing. Hardening mechanisms were studied and it was shown that besides the Hall-Petch strengthening, the effect of dislocation accumulation on mechanical properties is significant. Furthermore, for precipitation hardenable materials the role of inclusion particles is important for structure stabilization and further enhancement of mechanical properties.
采用多道次等径角挤压、锻造和拉拔工艺制备了单调强度大于1 Gpa的纯钛。研究了ECAP工艺路线、道次数和ECAP后退火等工艺因素对组织和力学性能的影响,特别是对金属和合金疲劳性能的影响。用透射电子显微镜、电子背散射谱和X射线分析对ECAP制备的材料进行了结构分析。结果表明,不同路线得到的样品之间的结构差异随着压制次数的增加而减小。工艺路线对低周和高周疲劳性能的影响很小或没有影响,但对晶形的影响很大。因此,可推荐采用A路线(工作钢坯在后续道次之间不旋转)用于实际实施。在有效应变为8-30的剧烈塑性变形过程中,晶粒尺寸减小到150-300 nm的纳米尺度,六方晶界的比例达到65%,这取决于材料、施加的应变量(ECAP压力量)和ECAP后退火。许多材料在高周疲劳状态下的疲劳性能都得到了改善。对于纯钛,经过优化的大塑性变形工艺后,疲劳极限达到550 Mpa,并可通过退火进一步提高。研究了强化机制,结果表明,除Hall-Petch强化外,位错积累对力学性能也有显著影响。此外,对于沉淀硬化材料,夹杂物颗粒的作用对于稳定组织和进一步提高力学性能是重要的。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure and Mechanical Properties of Submicrocrystalline Copper Produced by ECAP to Very High Strains
ECAP 超高应变亚微晶铜的结构和机械性能
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:A.Vinogradov;T.Suzuki;S.Hashimoto;K.Kitagawa;A.Kuznetsov;S.Dobatkin
- 通讯作者:S.Dobatkin
Fracture behaviour of ultrafine-grained materials under static and cyclic loading
- DOI:10.3139/146.101422
- 发表时间:2006-11
- 期刊:
- 影响因子:0.8
- 作者:P. Hübner;R. Kiessling;H. Biermann;A. Vinogradov
- 通讯作者:P. Hübner;R. Kiessling;H. Biermann;A. Vinogradov
Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation
- DOI:10.1007/s10853-006-0973-z
- 发表时间:2007-03
- 期刊:
- 影响因子:4.5
- 作者:A. Vinogradov
- 通讯作者:A. Vinogradov
Monotonic and Cyclic Behavior of Ultrafine Grain Metals : Overview
超细晶粒金属的单调和循环行为:概述
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:村中一孝;大竹祐輔;北川和夫;A.Vinogradov;V.Kopylov;A.Vinogradov
- 通讯作者:A.Vinogradov
Monotonic and Cyclic Behavior of Ultrafine Grain Metals ; Overview
超细晶粒金属的单调和循环行为;
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:P.Hubner;R.Kiessling;H.Biermanna;a.Vinogradov;A.Vinogradov
- 通讯作者:A.Vinogradov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINOGRADOV Alexei其他文献
VINOGRADOV Alexei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINOGRADOV Alexei', 18)}}的其他基金
Fatigue of Superplastic-Nanocrystals
超塑性纳米晶体的疲劳
- 批准号:
09650715 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Diversity Supplement to Microvascular mechanisms of growth restriction after environmental toxicant exposure (R01ES031285)
环境毒物暴露后生长受限的微血管机制的多样性补充(R01ES031285)
- 批准号:
10849145 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Biomineralization potential of inorganic polymer for bone tissue regenerative engineering
无机聚合物在骨组织再生工程中的生物矿化潜力
- 批准号:
10728774 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Role of particle surface functionalization in inflammation
颗粒表面功能化在炎症中的作用
- 批准号:
10810001 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Supplement to Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for EnhancedBioremediation of PFASs Using Supercritical Fluid Chromatography/Mass Spectrometry
使用超临界流体色谱/质谱法增强 PFAS 生物修复功能化混合纳米材料的模型辅助设计和集成的补充
- 批准号:
10601888 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Role of particle surface functionalization in inflammation
颗粒表面功能化在炎症中的作用
- 批准号:
10618289 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Role of particle surface functionalization in inflammation
颗粒表面功能化在炎症中的作用
- 批准号:
10463190 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Microvascular mechanisms of growth restriction after environmental toxicant exposure
环境毒物暴露后生长受限的微血管机制
- 批准号:
10359947 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Microvascular mechanisms of growth restriction after environmental toxicant exposure
环境毒物暴露后生长受限的微血管机制
- 批准号:
10727385 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
- 批准号:
10319174 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别: