Spokes: MEDIUM: MIDWEST: Smart Big Data Pipeline for Aging Rural Bridge Transportation Infrastructure (SMARTI)
辐条:媒介:中西部:老化农村桥梁交通基础设施的智能大数据管道 (SMARTI)
基本信息
- 批准号:1762034
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
America's bridges received a C+ from the American Society of Civil Engineers (ASCE) in 2017. Additionally, the US ranks only 11th world-wide in terms of infrastructure competitiveness. America's infrastructure, particularly its 50-100+ year-old bridges, is in poor health, representing a hidden crisis. Rural areas, due to their lower population density and distance from urban centers, are acutely affected by this crisis, particularly in terms of public safety and economic growth. Limited budgets for planning and maintenance only serve to exacerbate the crisis. To better inform future research, the research team held collaborative conferences and workshops, and conducted stakeholder surveys to identify issues impacting rural bridge health. Outcomes from these activities underscored the value of big data technologies to address the crisis and informed the proposed work. The mission of this multi-institution and multi-sector project is to produce a big data pipeline for rural bridge health management that improves transportation network performance and enhances safety.The research team will combine existing and new datasets to address challenges of relevance to bridge owners using scalable and replicable big data pipeline components. Activities will inform bridge owner decision-making by integrating existing datasets and data collected using next-generation health monitoring technologies (e.g., contact and non-contact sensors, unmanned aerial vehicles) with innovative data management techniques. Socio-technical impacts associated with potential decisions will also be assessed. Aging, rural bridge testbeds will be selected in consultation with public and private owners to produce data products that facilitate decision-making and ultimately, provide economical and reliable solutions that improve bridge health. Results from the research will be shared with engineers, owners, and builders at workshops hosted by the research team. Project findings will be disseminated through publications, conferences, meetings, and forums. The research team will engage with the Big Data Hubs and Spokes network to make data, methods, and results available across regions. By extension, project findings will also benefit activities used to monitor and manage other important infrastructure assets, including highways, buildings, power grids, offshore oil platforms, water networks, and other civil infrastructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国的桥梁在2017年获得了美国土木工程师协会(ASCE)的C+。此外,在基础设施竞争力方面,美国在全球仅排名第11位。美国的基础设施,尤其是50-100多年历史的桥梁,健康状况不佳,这代表着一种潜在的危机。农村地区由于人口密度较低且距离城市中心较远,受到这场危机的严重影响,特别是在公共安全和经济增长方面。用于规划和维护的有限预算只会加剧危机。为了更好地为未来的研究提供信息,研究小组举行了合作会议和讲习班,并进行了利益相关者调查,以确定影响农村桥梁健康的问题。这些活动的成果强调了大数据技术在应对危机方面的价值,并为拟议的工作提供了信息。这个多机构、多部门的项目的任务是为农村桥梁健康管理提供一个大数据管道,提高交通网络的性能和安全性。研究团队将结合现有和新的数据集,使用可扩展和可复制的大数据管道组件来解决与桥梁业主相关的挑战。通过将现有数据集和使用下一代健康监测技术(如接触式和非接触式传感器、无人驾驶飞行器)收集的数据与创新的数据管理技术相结合,这些活动将为桥梁所有者的决策提供信息。还将评估与可能的决定有关的社会技术影响。将在与公共和私人业主协商后选择老化的农村桥梁试验台,以生产数据产品,促进决策,并最终提供经济可靠的解决方案,改善桥梁健康。研究结果将在由研究小组主办的研讨会上与工程师、业主和建筑商分享。项目结果将通过出版物、会议和论坛传播。研究团队将与大数据中心和辐条网络合作,使数据、方法和结果在各地区可用。因此,项目结果也将有利于用于监测和管理其他重要基础设施资产的活动,包括公路、建筑物、电网、近海石油平台、水网和其他民用基础设施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chapter 2 - Robust Output Only Health Monitoring of Steel Railway Bridges: Analysis of Applicability of Different Sensors
第 2 章 - 钢制铁路桥梁的仅鲁棒输出健康监测:不同传感器的适用性分析
- DOI:10.4018/978-1-7998-2772-6
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rageh, A;Lopez, S.;Linzell, D.;Eftekhar Azam, S.
- 通讯作者:Eftekhar Azam, S.
Identifying Predictors of Bridge Deterioration in the United States from a Data Science Perspective
从数据科学的角度识别美国桥梁恶化的预测因素
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kale, Akshay
- 通讯作者:Kale, Akshay
Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition
- DOI:10.1002/stc.2288
- 发表时间:2019-02-01
- 期刊:
- 影响因子:5.4
- 作者:Azam, Saeed Eftekhar;Rageh, Ahmed;Linzell, Daniel
- 通讯作者:Linzell, Daniel
A Proposal for Research on the Application of AI/ML in ITPM: Intelligent Project Management
AI/ML在ITPM中的应用研究建议:智能项目管理
- DOI:10.4018/ijitpm.315290
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Mishra, Anoop;Tripathi, Abhishek;Khazanchi, Deepak
- 通讯作者:Khazanchi, Deepak
Steel railway bridge fatigue damage detection using numerical models and machine learning: Mitigating influence of modeling uncertainty
使用数值模型和机器学习进行钢制铁路桥梁疲劳损伤检测:减轻建模不确定性的影响
- DOI:10.1016/j.ijfatigue.2019.105458
- 发表时间:2020
- 期刊:
- 影响因子:6
- 作者:Rageh, Ahmed;Eftekhar Azam, Saeed;Linzell, Daniel G.
- 通讯作者:Linzell, Daniel G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Gandhi其他文献
Toward Interactive Visualizations for Explaining Machine Learning Models
用于解释机器学习模型的交互式可视化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ashley Ramsey;Yonas Kassa;Akshay Kale;Robin Gandhi;Brian Ricks - 通讯作者:
Brian Ricks
A Comparative Assessment of Bridge Deck Wearing Surfaces: Performance, Deterioration, and Maintenance
桥面磨损表面的比较评估:性能、恶化和维护
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Akshay Kale;Yonas Kassa;Brian Ricks;Robin Gandhi - 通讯作者:
Robin Gandhi
Correction to: Modular norm models: practical representation and analysis of contractual rights and obligations
- DOI:
10.1007/s00766-019-00327-8 - 发表时间:
2019-09-26 - 期刊:
- 影响因子:3.300
- 作者:
Sayonnha Mandal;Robin Gandhi;Harvey Siy - 通讯作者:
Harvey Siy
Robin Gandhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Gandhi', 18)}}的其他基金
BD Spokes: PLANNING: MIDWEST: Big Data Innovations for Bridge Health
BD 发言人:规划:中西部:桥梁健康的大数据创新
- 批准号:
1636805 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似海外基金
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
2039822 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761931 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761969 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761880 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1761772 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1762039 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1761887 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1762045 - 财政年份:2018
- 资助金额:
$ 100万 - 项目类别:
Standard Grant