Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
基本信息
- 批准号:1761931
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The opioid crisis ravaging Ohio and the Midwest disproportionally affects small and rural communities. Harnessing and deploying data holds promise for developing a response to this crisis by policymakers, healthcare providers, and citizens of the communities. Currently, there are many barriers to getting data into the hands of individuals on the frontlines. Crucial data are siloed across law enforcement, public health departments, hospitals and clinics, and county administrations; data often are inaccurate or collected in non-standard ways across different agencies and departments; the stigma of drug abuse limits accurate reporting of drug-related deaths; and information is not shared with the community and other stakeholders because of the lack of a privacy and security framework. Such barriers, for example, prevent individuals with addictions or their families and friends from locating available treatment centers or obtaining other important information in a timely way. Similarly, it is difficult for first responders and healthcare providers to obtain critical up-to-date information. In predominantly rural counties, these challenges are especially daunting because there is often poor connectivity and communication infrastructure. This Big Data Spoke project involves developing scalable, flexible, and connectivity-rich data-driven approaches to address the opioid epidemic. The cyberinfrastructure framework, OpenOD, will be initially designed and deployed in small and rural communities in Appalachia Ohio and the Midwest, where the need for data and connection are greatest. Based upon significant community input, OpenOD will also create end-user applications or enterprise solutions to support stakeholders and communities to mount a response they feel will be most efficient and beneficial at the local level. As a Spoke to NSF?s Midwest Big Data Hub, our efforts can be efficiently scaled, disseminated, and applied to the opioid and other societal problems such as infant mortality, crime, and natural disasters. This project fits within NSF's mission to promote the progress of science (contribute to the science and engineering of large socially relevant cyberinfrastructures) to advance the health and welfare of US citizens (by linking data sources in new and useful ways to empower communities to address societal problems; establishing sustainable partnerships between academia, industry, government and communities; increasing data literacy and community engagement with data science; and enhancing research and education via development/adaptation of training modules and courses in data analytics).The main goal of this project is to help small and rural communities in the Midwest address the opioid epidemic via BIGDATA (BD) technology. While no communities have been spared, small and rural communities face unique challenges in confronting the opioid epidemic: knowledge and data exist in siloes across multiple organizations with varying jurisdictional boundaries; efforts to collect, link, and analyze data are hampered by a lack of infrastructure and tools; rural areas are plagued by "dead zones" in cellular connectivity; communities lack capacity for data collection, and analytics; needs and resources across effected communities are not uniform and require BD approaches that are flexible, open, leverage significant community input, and can be dutifully validated. Our proposed solution is OpenOD, a framework that provides uniform, relevant and timely access to data. Working integrally with the Midwest Big Data Hub (MBDH) and our partners, our three main objectives are to: (1) Work with local communities to understand strengths and gaps in cyberinfrastructure, data availability, and need for data analytics workforce skills. (2) Assemble flexible cyberinfrastructure that includes a data commons, stakeholder-usable and cloud-amenable data analytics and visualization tools, and internet connectivity with both mobile and non-mobile capabilities. (3) Validate, evaluate, and disseminate cyberinfrastructure and data analytics tools to stakeholder groups throughout the region while fostering new partnerships. OpenOD will create approaches that will allow governing units to deploy openly available tools rather than rely on proprietary tools. In this way, existing disparities in data access and ensuing responses are effectively addressed. The potential contributions of the project are to: (1) Increase BD and STEM literacy and community engagement in underrepresented groups given the operating milieu of OpenOD in rural areas where the population is indigent and lacks adequate skills to join the modern workforce. (2) Improve well-being of individuals in society by linking data sources in new and useful ways to empower communities to address the opioid crisis; improved connectivity and timely delivery of critical information will accelerate community responsiveness and improve preventive strategies. (3) Provide infrastructure for research and education will be improved given that project activities will deliver linked, curated data sets to community stakeholders, researchers and educators. Training modules and courses adapted and developed and shared with local/regional educators and will remain with the communities after the funding period has ended. In addition, new and established partnerships will allow sustainability of the project in the communities for the long-term.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肆虐俄亥俄州和中西部的阿片类药物危机对小型和农村社区的影响不成比例。利用和部署数据有望为政策制定者、医疗保健提供者和社区公民制定应对这场危机的措施。目前,将数据送到第一线的个人手中存在许多障碍。关键数据分散在执法部门、公共卫生部门、医院和诊所以及县行政部门;数据往往不准确或在不同机构和部门之间以非标准方式收集;药物滥用的污名限制了与药物有关的死亡的准确报告;由于缺乏隐私和安全框架,信息无法与社区和其他利益攸关方共享。例如,这样的障碍会阻止有毒瘾的个人或他们的家人和朋友找到可用的治疗中心,或以及时的方式获得其他重要信息。同样,急救人员和医疗保健提供者也很难获得关键的最新信息。在以农村为主的县,这些挑战尤其令人望而生畏,因为那里的连接和通信基础设施往往很差。这个大数据演讲项目涉及开发可扩展、灵活和连接丰富的数据驱动方法,以应对阿片类药物的流行。网络基础设施框架OpenOD最初将在阿巴拉契亚、俄亥俄州和中西部的小型和农村社区设计和部署,这些社区对数据和连接的需求最大。基于大量的社区投入,OpenOD还将创建最终用户应用程序或企业解决方案,以支持利益相关者和社区在当地层面做出他们认为最有效和最有益的响应。正如接受美国国家科学基金会S中西部大数据中心采访时所说,我们的努力可以有效地扩展、传播和应用于阿片类药物和其他社会问题,如婴儿死亡率、犯罪和自然灾害。该项目符合NSF的使命,即促进科学进步(为大型社会相关网络基础设施的科学和工程做出贡献),以提高美国公民的健康和福利(通过以新的和有用的方式将数据来源联系起来,以增强社区解决社会问题的能力;在学术界、工业界、政府和社区之间建立可持续的伙伴关系;提高数据素养和社区对数据科学的参与;通过开发/调整培训模块和数据分析课程来加强研究和教育)。该项目的主要目标是帮助中西部的小型和农村社区通过BigData(BD)技术解决阿片类药物流行问题。虽然没有社区幸免于难,但小型和农村社区在应对阿片类药物流行方面面临着独特的挑战:知识和数据存在于具有不同管辖边界的多个组织的竖井中;由于缺乏基础设施和工具,收集、链接和分析数据的努力受到阻碍;农村地区受到手机连接“死区”的困扰;社区缺乏数据收集和分析能力;受影响社区的需求和资源不统一,需要灵活、开放、利用社区大量投入并可得到尽职验证的发展方法。我们建议的解决方案是OpenOD,这是一个提供统一、相关和及时的数据访问的框架。我们与中西部大数据中心(MBDH)和我们的合作伙伴通力合作,我们的三个主要目标是:(1)与当地社区合作,了解网络基础设施、数据可用性和数据分析员工技能需求方面的优势和差距。(2)组装灵活的网络基础设施,包括数据共享、利益相关者可用且兼容云的数据分析和可视化工具,以及具有移动和非移动功能的互联网连接。(3)在促进新伙伴关系的同时,向整个区域的利益攸关方群体验证、评估和传播网络基础设施和数据分析工具。OpenOD将创建允许管理单位部署开放可用的工具而不是依赖专有工具的方法。通过这种方式,有效地解决了在数据获取和随之而来的反应方面存在的差距。该项目的潜在贡献是:(1)考虑到OpenOD在农村地区的运作环境,提高BD和STEM的识字能力和社区对代表性不足群体的参与,因为农村地区的人口贫穷,缺乏加入现代劳动力的足够技能。(2)以新的、有用的方式将数据来源联系起来,以增强社区应对阿片类药物危机的能力,从而改善社会个人的福祉;改善连通性和及时提供关键信息将加快社区的反应速度并改进预防战略。(3)由于项目活动将向社区利益攸关方、研究人员和教育工作者提供链接的、经过管理的数据集,为研究和教育提供的基础设施将得到改善。培训模块和课程经过调整和开发,并与当地/区域教育工作者分享,并将在资助期结束后留在社区。此外,新的和已建立的合作伙伴关系将使该项目在社区中长期可持续发展。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge-Driven Drug-Use NamedEntity Recognition with Distant Supervision
- DOI:10.3233/shti220048
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Goonmeet Bajaj;Ugur Kursuncu;Manas Gaur;Usha Lokala;A. Hyder;Srinivas Parthasarathy;Amit P. Sheth;Srinivasan Parthasa-rathy
- 通讯作者:Goonmeet Bajaj;Ugur Kursuncu;Manas Gaur;Usha Lokala;A. Hyder;Srinivas Parthasarathy;Amit P. Sheth;Srinivasan Parthasa-rathy
Tutorial: Neuro-symbolic AI for Mental Healthcare
教程:用于心理保健的神经符号人工智能
- DOI:10.1145/3564121.3564817
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Roy, Kaushik;Lokala, Usha;Gaur, Manas;Sheth, Amit P
- 通讯作者:Sheth, Amit P
A Computational Approach to Understand Mental Health from Reddit: Knowledge-Aware Multitask Learning Framework
Reddit 上了解心理健康的计算方法:知识感知多任务学习框架
- DOI:10.1609/icwsm.v16i1.19322
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lokala, Usha;Srivastava, Aseem;Dastidar, Triyasha Ghosh;Chakraborty, Tanmoy;Akhtar, Md Shad;Panahiazar, Maryam;Sheth, Amit
- 通讯作者:Sheth, Amit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Sheth其他文献
Grounding From an AI and Cognitive Science Lens
从人工智能和认知科学的角度出发
- DOI:
10.1109/mis.2024.3366669 - 发表时间:
2024 - 期刊:
- 影响因子:6.4
- 作者:
Goonmeet Bajaj;V. Shalin;Srinivasan Parthasarathy;Amit Sheth;Amit Sheth - 通讯作者:
Amit Sheth
Causal Event Graph-Guided Language-based Spatiotemporal Question Answering
因果事件图引导的基于语言的时空问答
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kaushik Roy;Alessandro Oltramari;Yuxin Zi;Chathurangi Shyalika;Vignesh Narayanan;Amit Sheth - 通讯作者:
Amit Sheth
Cognitive manufacturing: definition and current trends
- DOI:
10.1007/s10845-024-02429-9 - 发表时间:
2024-06-20 - 期刊:
- 影响因子:7.400
- 作者:
Fadi El Kalach;Ibrahim Yousif;Thorsten Wuest;Amit Sheth;Ramy Harik - 通讯作者:
Ramy Harik
Ki-Cook: Clustering Multimodal Cooking Representations Through Ki-Cook: Clustering Multimodal Cooking Representations Through Knowledge-infused Learning Knowledge-infused Learning
Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 Ki-Cook:通过知识注入学习对多模态烹饪表示进行聚类 知识注入学习
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Thommen Karimpanal George;R. Venkataramanan;Swati Padhee;Saini Rohan;Rao Ronak;Anirudh Kaoshik 4;Sundara Rajan;Amit Sheth - 通讯作者:
Amit Sheth
RDR: the Recap, Deliberate, and Respond Method for Enhanced Language Understanding
RDR:增强语言理解的回顾、深思熟虑和回应方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuxin Zi;Hariram Veeramani;Kaushik Roy;Amit Sheth - 通讯作者:
Amit Sheth
Amit Sheth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Sheth', 18)}}的其他基金
EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
- 批准号:
2335967 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
- 批准号:
2133842 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF Convergence Accelerator: Symposium on Big Data and AI-Driven Disaster Management for Planning, Response, Recovery, and Resiliency
NSF 融合加速器:大数据和人工智能驱动的灾害管理规划、响应、恢复和复原力研讨会
- 批准号:
1956285 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
2013801 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
III: Travel Fellowships for Students from U.S. Universities to Attend ISWC 2016
三:美国大学学生参加 ISWC 2016 的旅费奖学金
- 批准号:
1622628 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
PFI:AIR - TT: Market Driven Innovations and Scaling up of Twitris- A System for Collective Social Intelligence
PFI:AIR - TT:市场驱动的创新和 Twitris 的扩展——集体社交智能系统
- 批准号:
1542911 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
TWC SBE: Medium: Context-Aware Harassment Detection on Social Media
TWC SBE:媒介:社交媒体上的情境感知骚扰检测
- 批准号:
1513721 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
I-Corps: Towards Commercialization of Twitris- a system for collective intelligence
I-Corps:迈向 Twitris 的商业化——集体智慧系统
- 批准号:
1343041 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
SoCS: Collaborative Research: Social Media Enhanced Organizational Sensemaking in Emergency Response
SoCS:协作研究:社交媒体增强应急响应中的组织意识
- 批准号:
1111182 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
2039822 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1956009 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761969 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Smart Big Data Pipeline for Aging Rural Bridge Transportation Infrastructure (SMARTI)
辐条:媒介:中西部:老化农村桥梁交通基础设施的智能大数据管道 (SMARTI)
- 批准号:
1762034 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761880 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1761772 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1762039 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: An Integrated Big Data Framework for Water Quality Issues in the Upper Mississippi River Basin
辐条:媒介:中西部:协作:密西西比河流域上游水质问题的综合大数据框架
- 批准号:
1761887 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1762045 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant