Collaborative Research: Interphase Chromatin as a Complex Active Fluid: Experiments and Microscopic to Mesoscopic Modeling

合作研究:间期染色质作为复杂的活性流体:实验和微观到介观建模

基本信息

  • 批准号:
    1762506
  • 负责人:
  • 金额:
    $ 39.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Almost every human cell contains a copy of the 3-meters of genetic material (DNA) that makes us unique. In an amazing achievement, the genetic sequence of these enormous DNA molecules was decoded about twenty years ago. Despite knowing the sequence, it remains unclear how these enormous molecules are packed into a cell nucleus (approximately a six micrometer diameter sphere) in a way that the genetic information can be useful. Understanding how the information in DNA is made available for use by the cell is fundamental for advances in modern medicine and to advancing health. During one phase in the growth of cells, the molecules of the nucleus fill it in an uncondensed polymeric form that rapidly moves because of natural thermal agitation. The molecular motion is not fully understood, especially the coherent motions caused by the close packing in the nucleus where many parts of the molecules move together. The goal of this research is to determine the mechanisms of this dynamic self-organization using a powerful combination of experiments, simulations and modeling. By providing a microscopic description for the origin of coherent motions, the proposed research will transform our understanding of the mechanobiology of the nucleus. This project also will provide novel educational opportunities for graduate and undergraduate students, who will receive training in advanced imaging techniques and analysis, cellular biology, polymer dynamics, fluid mechanics, as well as mathematical and computational modeling. This collaborative project will combine high-resolution live cell imaging experiments with theoretical and computational models to probe and illuminate the microscopic origins of interphase chromatin dynamics and its effect on the spatiotemporal self-organization of DNA. To develop a close connection between experiments and models, we will perform experiments in several cell lines with different spatial distributions of chromatin. These experiments will provide exquisite measurements of correlated motions over a wide range of length and time scales, and will be used to decipher the contributions of internal active forces on chromatin organization. Moreover, these experiments will guide theoretical and computational models based on coarse-grained descriptions of the chromatin as a confined and hydrodynamically interacting flexible polymer chain driven internally by stochastic force dipoles representing active enzymes. We will test the hypothesis that chromatin dynamics is primarily the consequence of internal activity via hydrodynamic interactions, and use quantitative comparisons between experiments and models to elucidate the symmetries, frequencies, and intensities of active events responsible for coherent motion. Such knowledge is critical for understanding the physiology of the interphase chromatin dynamics in the cell nucleus.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几乎每个人类细胞都含有一份3米长的遗传物质(DNA)的副本,这使我们独一无二。大约20年前,这些巨大的DNA分子的基因序列被破译,这是一项令人惊叹的成就。尽管知道了序列,但目前还不清楚这些巨大的分子是如何以遗传信息有用的方式装入细胞核(直径约为6微米的球体)的。了解DNA中的信息是如何被细胞使用的,对于现代医学的进步和促进健康是至关重要的。在细胞生长的一个阶段,细胞核的分子以一种未浓缩的聚合物形式填充它,由于自然的热搅拌,这种聚合物迅速移动。对于分子的运动,尤其是由原子核中紧密堆积引起的相干运动,人们还没有完全了解,在原子核中,分子的许多部分一起运动。这项研究的目标是通过实验、模拟和建模的强大组合来确定这种动态自组织的机制。通过为相干运动的起源提供微观描述,拟议中的研究将改变我们对原子核机械生物学的理解。该项目还将为研究生和本科生提供新的教育机会,他们将接受先进成像技术和分析、细胞生物学、聚合物动力学、流体力学以及数学和计算建模方面的培训。这个合作项目将结合高分辨率的活细胞成像实验与理论和计算模型来探索和阐明间期染色质动力学的微观起源及其对DNA时空自组织的影响。为了建立实验和模型之间的紧密联系,我们将在几个染色质空间分布不同的细胞系中进行实验。这些实验将在广泛的长度和时间范围内提供相关运动的精确测量,并将用于破译内部作用力对染色质组织的贡献。此外,这些实验将指导理论和计算模型,基于对染色质的粗粒度描述,将染色质描述为由代表活性酶的随机力偶极子内部驱动的受限和流体动力相互作用的柔性聚合物链。我们将检验染色质动力学主要是内部活动通过流体动力学相互作用的结果的假设,并使用实验和模型之间的定量比较来阐明导致相干运动的活动事件的对称性、频率和强度。这些知识对于理解细胞核中间期染色质动力学的生理学至关重要。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry-based classification of forces driving chromatin dynamics
基于对称性的染色质动力学驱动力分类
  • DOI:
    10.1039/d2sm00840h
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Eshghi, Iraj;Zidovska, Alexandra;Grosberg, Alexander Y.
  • 通讯作者:
    Grosberg, Alexander Y.
Structural and Dynamical Signatures of Local DNA Damage in Live Cells
  • DOI:
    10.1016/j.bpj.2019.10.042
  • 发表时间:
    2020-05-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Eaton, Jonah A.;Zidovska, Alexandra
  • 通讯作者:
    Zidovska, Alexandra
Euchromatin Activity Enhances Segregation and Compaction of Heterochromatin in the Cell Nucleus
常染色质活性增强细胞核中异染色质的分离和压缩
  • DOI:
    10.1103/physrevx.12.041033
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Mahajan, Achal;Yan, Wen;Zidovska, Alexandra;Saintillan, David;Shelley, Michael J.
  • 通讯作者:
    Shelley, Michael J.
Mechanical stress affects dynamics and rheology of the human genome
机械应力影响人类基因组的动力学和流变学
  • DOI:
    10.1039/d1sm00983d
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Caragine, Christina M.;Kanellakopoulos, Nikitas;Zidovska, Alexandra
  • 通讯作者:
    Zidovska, Alexandra
Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere
  • DOI:
    10.1140/epje/s10189-023-00327-1
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Eshghi,Iraj;Zidovska,Alexandra;Grosberg,Alexander Y. Y.
  • 通讯作者:
    Grosberg,Alexander Y. Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandra Zidovska其他文献

On the mechanical stabilization of filopodia.
关于丝状伪足的机械稳定。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Alexandra Zidovska;E. Sackmann
  • 通讯作者:
    E. Sackmann
Dynamic self-organization of the human genome during the cell cycle
  • DOI:
    10.1016/j.bpj.2022.11.331
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Suho Lee;Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska
Tethered tracer in a mixture of hot and cold Brownian particles: can activity pacify fluctuations?
冷热布朗粒子混合物中的系留示踪剂:活动能否平息波动?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Michael Wang;Ketsia Zinga;Alexandra Zidovska;A. Grosberg
  • 通讯作者:
    A. Grosberg
Centromere and telomere dynamics reveal heterogeneity of the human cell nucleus
  • DOI:
    10.1016/j.bpj.2023.11.2000
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Alexis Clavijo;Steven Ionov;Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska
The “Self-Stirred” Genome: Dynamics, Flows and Rheology
  • DOI:
    10.1016/j.bpj.2020.11.879
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra Zidovska
  • 通讯作者:
    Alexandra Zidovska

Alexandra Zidovska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandra Zidovska', 18)}}的其他基金

Investigating Phase Separations as a Mechanism of Genome Compartmentalization Through In-vivo Experiments
通过体内实验研究相分离作为基因组区室化的机制
  • 批准号:
    2210541
  • 财政年份:
    2022
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
  • 批准号:
    2153432
  • 财政年份:
    2022
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
CAREER: Physics of Chromatin: Micromechanics of Active Chromatin Dynamics in Interphase
职业:染色质物理学:间期活性染色质动力学的微观力学
  • 批准号:
    1554880
  • 财政年份:
    2016
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了