GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines

GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制

基本信息

  • 批准号:
    1762520
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

About 200 million internal combustion engines (ICEs) are produced in the world every year and used in energy, transport and service sectors. Furthermore, ICEs account for over 22% of the U.S. total energy consumption and produce the largest portion of CO2 greenhouse gas emissions in urban areas. Dual fuel natural gas (NG) engines in advanced low temperature combustion regimes represent the state-of-the-art ICE technology with some of the highest reported fuel conversion efficiencies and 25% lower CO2 emissions compared to conventional engines. However, achieving a robust and high-efficiency performance of these engines on a broad operational range using existing control technologies is not possible due to their highly nonlinear and uncertain dynamic behavior. This research aims at developing fundamental tools for dynamic modeling and control of nonlinear systems and applying them to high-efficiency low-emission advanced ICEs. The project will provide wide-ranging societal benefits through three major impact areas: first, by advancing research in nonlinear control systems, and mixing and reactive flow including combustion systems; second, by providing direct benefits for control of combustion engines, commonly used in power generation, automotive, locomotive, marine, oil and gas drilling, construction, utilities and manufacturing industries; and third, through educational and outreach activities delivered at industry sites, local communities and science fairs. This project is a collaborative effort between Michigan Technological University, University of Georgia, and the industry partner, Cummins Inc. The project intends to develop a suite of innovative control-oriented modeling and stochastic predictive control design tools to address control challenges for advanced dual fuel natural gas engines, as well as a broad range of other nonlinear and stochastic dynamic systems. The outcomes of this project result in six main components that include: (i) characterizing the dynamics of dual fuel NG engines in advanced combustion regimes, (ii) building the first physics-based control-oriented model for advanced dual fuel NG engines, (iii) developing new analytical tools for deriving models through the powerful fusion of machine learning and classical multivariate methods, (iv) providing solutions to fill the gaps between first-principles models and data-driven methods for estimating an accurate model, (v) bridging the gaps between parameter-varying systems and stochastic controls, and (vi) constructing, testing, and validating the combustion controllers for dual fuel NG engines. The outcomes from these six theoretical, modeling and experimental contributions will be generic dynamic modeling and predictive control design tools for nonlinear and stochastic industrial systems that are demonstrated on engine test-beds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世界上每年生产约2亿台内燃机,用于能源、运输和服务部门。此外,ICE占美国总能源消耗的22%以上,并在城市地区产生最大比例的CO2温室气体排放。采用先进低温燃烧方式的双燃料天然气(NG)发动机代表了最先进的内燃机技术,与传统发动机相比,其燃料转化效率最高,二氧化碳排放量降低了25%。然而,由于这些发动机的高度非线性和不确定的动态行为,使用现有的控制技术在宽的操作范围内实现这些发动机的鲁棒和高效性能是不可能的。本研究旨在开发非线性系统动态建模与控制的基本工具,并将其应用于高效低排放的先进内燃机。该项目将通过三个主要影响领域提供广泛的社会效益:第一,通过推进非线性控制系统以及包括燃烧系统在内的混合和反应流的研究;第二,通过为内燃机的控制提供直接效益,内燃机通常用于发电,汽车,机车,船舶,石油和天然气钻探,建筑,公用事业和制造业;第三,通过在工业场所、当地社区和科学博览会开展教育和外联活动。该项目是密歇根理工大学、格鲁吉亚大学和行业合作伙伴康明斯公司共同努力的结果。该项目旨在开发一套创新的面向控制的建模和随机预测控制设计工具,以解决先进的双燃料天然气发动机的控制挑战,以及广泛的其他非线性和随机动态系统。该项目的成果包括六个主要组成部分,其中包括:(i)表征双燃料NG发动机在先进燃烧状态下的动力学,(ii)构建用于先进双燃料NG发动机的第一个基于物理学的面向控制的模型,(iii)开发用于通过机器学习和经典多变量方法的强大融合来导出模型的新分析工具,(iv)提供解决方案以填补第一原理模型与用于估计准确模型的数据驱动方法之间的差距,(v)弥合参数变化系统与随机控制之间的差距,以及(vi)构造、测试和验证用于双燃料NG发动机的燃烧控制器。这六个理论、建模和实验贡献的成果将成为用于非线性和随机工业系统的通用动态建模和预测控制设计工具,并在发动机试验台上得到验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Modeling and Control of Cyclic Variability of an Engine Operating in Low Temperature Combustion Modes
  • DOI:
    10.1016/j.ifacol.2021.11.275
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadaf Batool;J. Naber;M. Shahbakhti
  • 通讯作者:
    Sadaf Batool;J. Naber;M. Shahbakhti
Input-output Data-driven Modeling and MIMO Predictive Control of an RCCI Engine Combustion
RCCI 发动机燃烧的输入输出数据驱动建模和 MIMO 预测控制
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khoshbakht Irdmousa, Behrouz;Naber, Jeffrey Donald;Mohammadpour Velni, Javad;Borhan, Hoseinali;Shahbakhti, Mahdi
  • 通讯作者:
    Shahbakhti, Mahdi
Data-Driven Model Learning and Control of RCCI Engines based on Heat Release Rate
基于热释放率的 RCCI 发动机数据驱动模型学习和控制
  • DOI:
    10.1016/j.ifacol.2022.11.249
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sitaraman, Radhika;Batool, Sadaf;Borhan, Hoseinali;Velni, Javad Mohammadpour;Naber, Jeffrey D.;Shahbakhti, Mahdi
  • 通讯作者:
    Shahbakhti, Mahdi
Closed-Loop Predictive Control of a Multi-mode Engine Including Homogeneous Charge Compression Ignition, Partially Premixed Charge Compression Ignition, and Reactivity Controlled Compression Ignition Modes
多模式发动机的闭环预测控制,包括均质充气压缩点火、部分预混合充气压缩点火和反应性控制压缩点火模式
Control-oriented Data-driven and Physics-based Modeling of Maximum Pressure Rise Rate in Reactivity Controlled Compression Ignition Engines
反应控制压缩点火发动机中最大压力上升率的面向控制的数据驱动和基于物理的建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Naber其他文献

An Experimental Investigation into the Effect of NO2 and Temperature on the Passive Oxidation and Active Regeneration of Particulate Matter in a Diesel Particulate Filter
  • DOI:
    10.1007/s40825-017-0074-2
  • 发表时间:
    2017-10-09
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Krishnan Raghavan;John Johnson;Jeffrey Naber
  • 通讯作者:
    Jeffrey Naber

Jeffrey Naber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Naber', 18)}}的其他基金

Planning Grant: Engineering Research Center for Emerging Disaster Engineering Encompassing Human Directed Expert Systems (ERC-DEES)
规划资助:新兴灾害工程工程研究中心,包括人类指导专家系统(ERC-DEES)
  • 批准号:
    1936861
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
MRI: Development of Combustion Vessel for the Study of Gas and Dispersed Liquid Phase at Elevated Pressure and Temperature
MRI:开发用于研究高压和高温下气体和分散液相的燃烧容器
  • 批准号:
    0619585
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129825
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
  • 批准号:
    2129776
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
  • 批准号:
    2219788
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
  • 批准号:
    2302217
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147126
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
  • 批准号:
    2147122
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
  • 批准号:
    2050691
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了