Collaborative Research: Operations-Driven Machine Learning

协作研究:操作驱动的机器学习

基本信息

  • 批准号:
    1762744
  • 负责人:
  • 金额:
    $ 29.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This award will contribute to the Nation's prosperity and welfare by capitalizing on the increased availability and accessibility of data to improve operational decision making. Operational decisions are ubiquitous in all aspects of the commercial economy, and even incremental improvements in operations can have major impacts in the competitiveness of such sectors as transportation, logistics, healthcare delivery, supply chain management. Similarly, public sector service operations involve decision making to wisely invest limited public resources. The ongoing data revolution has created great opportunities for leveraging large scale data to improve operational decision making. This award will support research in new techniques to make effective use of these data in the management of operations. This project provides a broadly applicable framework for addressing operational decisions and will result in improved performance and efficiency in practice. The project will involve outreach engagements with diverse organizations, including a nonprofit foster care agency. Current operational decision-making often involve two significant challenges: prediction and optimization. These tasks are usually addressed sequentially: key parameters are first predicted using modern statistical machine learning tools, and then planning decisions are made using these predictions within a complex optimization model. This project advances a new, broadly applicable framework, called Smart "Predict, then Optimize" (SPO), that effectively addresses the prediction and optimization challenges in tandem. In this new framework, operational performance is measured by the true objective value of the solutions generated from the predicted parameters. This project investigates the statistical and computational properties of novel loss functions in the SPO framework, including convex surrogates as well as non-convex formulations. The project will also develop new algorithms for training machine learning models, such as linear models, logistic models, and decision trees, using the new loss functions, and will extend the SPO framework to handle regularization, robustness, different data primitives, and dynamic data collection with exploration-exploitation tradeoffs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过利用数据可用性和可获得性的提高来改进业务决策,从而为国家的繁荣和福利做出贡献。运营决策在商业经济的各个方面无处不在,即使是运营的渐进式改进也会对运输、物流、医疗保健交付、供应链管理等行业的竞争力产生重大影响。同样,公共部门的服务运营涉及明智地投资有限的公共资源的决策。正在进行的数据革命为利用大规模数据改进运营决策创造了巨大的机遇。该奖项将支持对新技术的研究,以便在运营管理中有效利用这些数据。该项目为解决业务决策提供了一个广泛适用的框架,并将在实践中提高绩效和效率。该项目将涉及与不同组织的外展活动,包括一个非营利性寄养机构。当前的运营决策往往涉及两个重大挑战:预测和优化。这些任务通常是按顺序处理的:首先使用现代统计机器学习工具预测关键参数,然后在复杂的优化模型中使用这些预测做出规划决策。该项目提出了一个新的、广泛适用的框架,称为智能“预测,然后优化”(SPO),它有效地解决了预测和优化的挑战。在这个新的框架中,运营绩效是通过预测参数生成的解决方案的真实客观值来衡量的。这个项目研究了SPO框架中新的损失函数的统计和计算性质,包括凸替代和非凸公式。该项目还将开发用于训练机器学习模型的新算法,如线性模型、逻辑模型和决策树,使用新的损失函数,并将扩展SPO框架,以处理正则化、健壮性、不同的数据基元和具有勘探-开采权衡的动态数据收集。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalization Bounds in the Predict-then-Optimize Framework
  • DOI:
    10.1287/moor.2022.1330
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Othman El Balghiti;Adam N. Elmachtoub;Paul Grigas;Ambuj Tewari
  • 通讯作者:
    Othman El Balghiti;Adam N. Elmachtoub;Paul Grigas;Ambuj Tewari
Risk Bounds and Calibration for a Smart Predict-then-Optimize Method
智能预测然后优化方法的风险界限和校准
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Grigas其他文献

Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods
逻辑回归的条件数分析及其对标准一阶求解方法的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Freund;Paul Grigas;R. Mazumder
  • 通讯作者:
    R. Mazumder
Online Contextual Decision-Making with a Smart Predict-then-Optimize Method
使用智能预测然后优化方法进行在线情境决策
  • DOI:
    10.48550/arxiv.2206.07316
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heyuan Liu;Paul Grigas
  • 通讯作者:
    Paul Grigas
IsolatIon, expans Ion and admInIstratIon of chondrocytes Into bIocompatIble carrIers
软骨细胞的分离、扩增和植入到生物相容性载体中
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Grigas;Andrejus Surovas
  • 通讯作者:
    Andrejus Surovas
AdaBoost and Forward Stagewise Regression are First-Order Convex Optimization Methods
AdaBoost 和前向阶段回归是一阶凸优化方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Freund;Paul Grigas;R. Mazumder
  • 通讯作者:
    R. Mazumder
New Methods for Regularization Path Optimization via Differential Equations
通过微分方程进行正则化路径优化的新方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heyuan Liu;Paul Grigas
  • 通讯作者:
    Paul Grigas

Paul Grigas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Grigas', 18)}}的其他基金

CRII: CIF: New Structure-Exploiting and Memory-Efficient Methods for Large-Scale Optimization and Data Analysis
CRII:CIF:用于大规模优化和数据分析的新结构利用和内存高效方法
  • 批准号:
    1755705
  • 财政年份:
    2018
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321532
  • 财政年份:
    2023
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
  • 批准号:
    2312457
  • 财政年份:
    2023
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
  • 批准号:
    2312458
  • 财政年份:
    2023
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revenue Management for Port Operations and other Multistage Service Systems
合作研究:港口运营和其他多级服务系统的收益管理
  • 批准号:
    2127778
  • 财政年份:
    2022
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Revenue Management for Port Operations and other Multistage Service Systems
合作研究:港口运营和其他多级服务系统的收益管理
  • 批准号:
    2127779
  • 财政年份:
    2022
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Autonomy of Origami-inspired Transformable Systems in Space Operations
合作研究:CPS:媒介:太空作战中受折纸启发的可变换系统的自主性
  • 批准号:
    2201568
  • 财政年份:
    2022
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Autonomy of Origami-inspired Transformable Systems in Space Operations
合作研究:CPS:媒介:太空作战中受折纸启发的可变换系统的自主性
  • 批准号:
    2201344
  • 财政年份:
    2022
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Autonomy of Origami-inspired Transformable Systems in Space Operations
合作研究:CPS:媒介:太空作战中受折纸启发的可变换系统的自主性
  • 批准号:
    2201612
  • 财政年份:
    2022
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
  • 批准号:
    2032261
  • 财政年份:
    2021
  • 资助金额:
    $ 29.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了