CRII: CIF: New Structure-Exploiting and Memory-Efficient Methods for Large-Scale Optimization and Data Analysis
CRII:CIF:用于大规模优化和数据分析的新结构利用和内存高效方法
基本信息
- 批准号:1755705
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale optimization methods have been paramount to the successes of recent applications of machine learning and data analysis in a wide variety of domains. At the same time, certain structural properties of statistical models, such as sparsity or low-rank structure, have proven to be crucial for obtaining meaningful and accurate results in high dimensions. In addition to being highly scalable to large datasets, some optimization algorithms have the desirable property that they directly promote the aforementioned valuable structural properties of models. This project involves developing, analyzing, and implementing novel optimization algorithms that have such beneficial structure-exploiting and also memory-efficiency properties. This project directly involves the mentoring of graduate students, as well as integration of research results into an undergraduate level machine learning course and a graduate level course in optimization and statistical learning.The foundation for this project is the Frank-Wolfe Method, a particular structure-exploiting first-order gradient optimization algorithm, and the related methodology of in-face directions. In-face directions automatically promote well-structured near-optimal solutions and have encouraging memory-efficiency properties. This research will investigate conditions whereby methods with in-face directions, as applied to convex relaxations of matrix completion and more general atomic norm regularization problems, are guaranteed to have a low memory footprint. Furthermore, this project will extend the reach of methods that incorporate in-face directions to new problem classes, including non-smooth objective functions, non-convex objective functions, and stochastic gradient estimates. The proposed optimization framework and in-face methodology applies very generally, and has potential for broader impact in several areas, including recommender systems, bioinformatics, customer segmentation, sentiment analysis, and medical imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模优化方法对于最近机器学习和数据分析在各种领域的应用的成功至关重要。同时,统计模型的某些结构性质,如稀疏性或低秩结构,已被证明是在高维上获得有意义和准确结果的关键。除了对大型数据集具有高度可扩展性外,一些优化算法还具有直接提升上述有价值的模型结构特性的理想特性。这个项目包括开发、分析和实现新的优化算法,这些算法具有这样有益的结构利用和内存效率特性。该项目直接涉及研究生的指导,并将研究成果整合到本科水平的机器学习课程和研究生水平的优化与统计学习课程中。本项目的基础是Frank-Wolfe方法,一种特殊的结构利用一阶梯度优化算法,以及面朝方向的相关方法。正面方向自动促进结构良好的接近最优的解决方案,并具有令人鼓舞的内存效率特性。本研究将探讨具有正面方向的方法,如应用于矩阵补全的凸松弛和更一般的原子范数正则化问题时,保证具有低内存占用的条件。此外,该项目将扩展包含正面方向的方法的范围到新的问题类别,包括非光滑目标函数,非凸目标函数和随机梯度估计。所提出的优化框架和面对面方法适用范围非常广泛,并有可能在几个领域产生更广泛的影响,包括推荐系统、生物信息学、客户细分、情感分析和医学成像。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Online Learning and Decision-making via Dual Mirror Descent
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Alfonso Lobos;Paul Grigas;Zheng Wen
- 通讯作者:Alfonso Lobos;Paul Grigas;Zheng Wen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Grigas其他文献
Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods
逻辑回归的条件数分析及其对标准一阶求解方法的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Freund;Paul Grigas;R. Mazumder - 通讯作者:
R. Mazumder
Online Contextual Decision-Making with a Smart Predict-then-Optimize Method
使用智能预测然后优化方法进行在线情境决策
- DOI:
10.48550/arxiv.2206.07316 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Heyuan Liu;Paul Grigas - 通讯作者:
Paul Grigas
IsolatIon, expans Ion and admInIstratIon of chondrocytes Into bIocompatIble carrIers
软骨细胞的分离、扩增和植入到生物相容性载体中
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Paul Grigas;Andrejus Surovas - 通讯作者:
Andrejus Surovas
AdaBoost and Forward Stagewise Regression are First-Order Convex Optimization Methods
AdaBoost 和前向阶段回归是一阶凸优化方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
R. Freund;Paul Grigas;R. Mazumder - 通讯作者:
R. Mazumder
On the softplus penalty for large-scale convex optimization
关于大规模凸优化的softplus惩罚
- DOI:
10.1016/j.orl.2023.10.015 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meng Li;Paul Grigas;Alper Atamtürk - 通讯作者:
Alper Atamtürk
Paul Grigas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Grigas', 18)}}的其他基金
Collaborative Research: Operations-Driven Machine Learning
协作研究:操作驱动的机器学习
- 批准号:
1762744 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2308597 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2241057 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: New Methods for Learning on Hypergraphs for Single-Cell Chromatin Data Analysis
合作研究:CIF:Medium:用于单细胞染色质数据分析的超图学习新方法
- 批准号:
2229306 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132815 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132843 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: Small: New Directions in Clustering: Interactive Algorithms and Statistical Models
CIF:小型:聚类的新方向:交互式算法和统计模型
- 批准号:
2133484 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2007797 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: Small: Poisson matching: A new tool for information theory
CIF:小:泊松匹配:信息论的新工具
- 批准号:
2007965 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant