Integrable and Non-Integrable Dispersive Partial Differential Equations

可积和不可积色散偏微分方程

基本信息

  • 批准号:
    1763074
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

One of the models the PI is proposing to investigate is the Korteweg-de Vries (KdV) equation. This equation was derived more that a hundred years ago to explain the behavior of long waves in channels of shallow water. In the 1960s, researchers at Princeton's Plasma Physics Laboratory demonstrated that this equation exhibits a wealth of novel features, which have sparked the interest of mathematicians and physicists alike. However, despite all the attention it has received over the years, existence of solutions under minimal assumptions has been proved only recently by the PI and her collaborators. One ingredient in their work is the recent discovery of new conservation laws. This project outlines several additional problems that can now be attacked using this discovery. Another major impetus behind this project is to prove that complicated transient dynamics resolve into simple dynamics in the distant future. The physical significance of this phenomenon relies on its stability under perturbations. While in the past, the PI has investigated deterministic perturbations to the equations, the current project takes this theme in a new direction by considering stability in the presence of (random) noise. The project focuses on several problems that lie at the intersection of nonlinear dispersive partial differential equations, completely integrable systems, and stochastic partial differential equations. The PI's discovery of new microscopic conservation laws for KdV has opened the door to treating three seemingly unrelated problems of long-standing interest regarding KdV on the line: optimal regularity well-posedness, symplectic non-squeezing, and invariance of white noise. In addition, the PI is proposing a coherent plan for establishing invariance of the Gibbs measure for the Landau-Lifshitz model and invariance of white noise for the focusing cubic Nonlinear Schr\"odinger Equation (NLS). This program involves establishing the analogous statements for the physical atomic models associated with these problems (which the PI has successfully completed) and then taking the continuum limit for the corresponding rough data. This should reveal the physical renormalizations for the Landau-Lifshitz and the cubic NLS models that would ensure well-posedness for such data. As the Gibbs measure for the Landau-Lifshitz model corresponds to Brownian motion on the sphere, this problem is also interesting from a purely probabilistic point of view as yielding a Hamiltonian measure-preserving flow on such paths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI提议研究的模型之一是Korteweg-De Vries(KDV)方程。 该方程的得出比一百年前得出的是解释浅水通道中长波的行为。 在1960年代,普林斯顿血浆物理实验室的研究人员表明,该方程式展示了许多新颖的特征,这激发了数学家和物理学家的兴趣。 但是,尽管多年来受到了所有关注,但PI和她的合作者最近才证明了最少假设的解决方案的存在。 他们的工作中的一种成分是最近发现了新的保护法。 该项目概述了现在可以使用此发现攻击的其他几个问题。 该项目背后的另一个主要动力是证明复杂的瞬态动力学在遥远的未来将其置于简单的动态中。 这种现象的物理意义取决于其在扰动下的稳定性。 在过去,PI调查了方程式的确定性扰动,当前项目通过在存在(随机)噪声的情况下考虑稳定性来将该主题朝一个新的方向发展。 该项目的重点是在非线性分散偏微分方程,完全可以集成的系统和随机部分微分方程的交点上的几个问题。 PI发现针对KDV的新显微镜保护定律为治疗三个看似无关的关于KDV的长期兴趣的问题打开了大门:最佳的规律性适应性良好,符号性的非斜率和白噪声的不变性。 In addition, the PI is proposing a coherent plan for establishing invariance of the Gibbs measure for the Landau-Lifshitz model and invariance of white noise for the focusing cubic Nonlinear Schr\"odinger Equation (NLS). This program involves establishing the analogous statements for the physical atomic models associated with these problems (which the PI has successfully completed) and then taking the continuum limit for the corresponding rough data. This应揭示Landau-Lifshitz和Cutic NLS模型的物理重态化,这些模型将确保该数据的适当性。认为值得通过基金会的智力优点和更广泛影响的评论标准来评估值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Invariant Measures for Integrable Spin Chains and an Integrable Discrete Nonlinear Schrödinger Equation
可积自旋链的不变测度和可积离散非线性薛定谔方程
  • DOI:
    10.1137/19m1265314
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Angelopoulos, Yannis;Killip, Rowan;Visan, Monica
  • 通讯作者:
    Visan, Monica
Breakdown of Regularity of Scattering for Mass-Subcritical NLS
质量亚临界NLS散射规律的分解
Global Well-Posedness for the Fifth-Order KdV Equation in $$H^{-1}(\pmb {\mathbb {R}})$$
  • DOI:
    10.1007/s40818-021-00111-4
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bjoern Bringmann;R. Killip;M. Vişan
  • 通讯作者:
    Bjoern Bringmann;R. Killip;M. Vişan
Invariance of white noise for KdV on the line
  • DOI:
    10.1007/s00222-020-00964-9
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    R. Killip;Jason Murphy;M. Vişan
  • 通讯作者:
    R. Killip;Jason Murphy;M. Vişan
Sonin's argument, the shape of solitons, and the most stably singular matrix
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Killip;M. Vişan
  • 通讯作者:
    R. Killip;M. Vişan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Visan其他文献

Asymptotic behavior of solutions to NLS with critical homogeneous nonlinearity
具有临界齐次非线性的 NLS 解的渐近行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki
  • 通讯作者:
    Satoshi Masaki
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
  • DOI:
    10.1007/s00209-017-1934-8
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng
  • 通讯作者:
    Jiqiang Zheng
Navier-Stokes-Korteweg方程式に対する時間大域解の一意存在性について
Navier-Stokes-Korteweg 方程时间全局解的唯一存在性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki;村田美帆
  • 通讯作者:
    村田美帆
質量劣臨界非線形シュレディンガー方程式の負の微分指数を持つソボレフ空間での解析
负微分指数Sobolev空间中质量亚临界非线性薛定谔方程分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan
  • 通讯作者:
    Monica Visan
Asymptotic behavior of solutions to nonlinear Schrodinger equation with critical homogeneous nonlinearity
具有临界齐次非线性的非线性薛定谔方程解的渐近行为
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki
  • 通讯作者:
    Satoshi Masaki

Monica Visan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Visan', 18)}}的其他基金

Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
  • 批准号:
    2054194
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
  • 批准号:
    1500707
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Dispersive equations with broken symmetries
对称性破缺的色散方程
  • 批准号:
    1161396
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
  • 批准号:
    0901166
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
  • 批准号:
    0965029
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

高分散非贵金属合金碳基中空催化剂的构筑及呋喃醛加氢脱氧性能研究
  • 批准号:
    22378135
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氮锚定的原子级分散非贵金属催化剂丙烷脱氢制丙烯研究
  • 批准号:
    22378379
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非晶固体分散体的物相结构对药物溶出行为和药动学规律的影响及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非晶固体分散体的物相结构对药物溶出行为和药动学规律的影响及其机制研究
  • 批准号:
    82204321
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
电磁耦合作用下分散质非稳态响应机理及液滴临界聚并性能调控
  • 批准号:
    52204074
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of computational algorithms for nonlinear wave analysis based on discrete methods for integrable systems
基于可积系统离散方法的非线性波分析计算算法的开发
  • 批准号:
    18K03435
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of self-adaptive moving mesh methods for numerical computations of phenomena with large deformation based on the theory of integrable systems
基于可积系统理论的大变形现象数值计算自适应移动网格方法的发展
  • 批准号:
    15K04909
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of ultradiscretization with parity variables and its application to integrable systems
奇偶变量超离散化的建立及其在可积系统中的应用
  • 批准号:
    26790082
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cauchy problem for nonlinear dispersive equations and integrable systems
非线性色散方程和可积系统的柯西问题
  • 批准号:
    26800070
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Asymptotic analysis of the integrable discrete nonlinear Schrodinger equation
可积离散非线性薛定谔方程的渐近分析
  • 批准号:
    26400127
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了