Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
基本信息
- 批准号:2348018
- 负责人:
- 金额:$ 38.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrable systems have long served as guides in the study of Hamiltonian partial differential equations. They arise as effective models of real physical systems, including in optics and many-body quantum mechanics. It is in the setting of completely integrable systems that solitons and multisolitons were first discovered. These structures have since found numerous applications in the applied sciences: for example, in fiber optics, solitons have been employed in the transmission of digital signals over long distances, while in biology, they are used to describe signal propagation in the nervous system and low-frequency collective motion in proteins. This project seeks to investigate both longstanding and newly introduced integrable models. Specifically, we seek to find the minimal conditions on the initial state under which one can construct global-in-time dynamics, investigate the (in)stability of special structures (such as solitons and multisolitons), and elucidate the long-time behavior of general solutions. The project provides significant research training opportunities for graduate students, who are integrated into the main objectives of the project. The project investigates the following specific questions for the newly introduced continuum Calogero-Moser equations: (1) large data well-posedness in the scaling-invariant space, (2) scattering for both the defocusing model and the focusing equation for initial data with mass less than that of the ground state soliton, and (3) the determination of the blowup threshold in the focusing case. Further objectives include orbital and asymptotic stability of multisoliton solutions to the Benjamin-Ono equation in optimal well-posedness spaces, dispersive decay away from the soliton component for large solutions to this equation, and the construction of Gibbs dynamics for the Landau-Lifshitz model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可积系统长期以来一直是哈密顿偏微分方程研究的指导。它们作为真实的物理系统的有效模型出现,包括在光学和多体量子力学中。正是在完全可积系统的背景下,孤子和多孤子才被首次发现。这些结构在应用科学中有许多应用:例如,在光纤中,孤子被用于长距离传输数字信号,而在生物学中,它们被用来描述神经系统中的信号传播和蛋白质中的低频集体运动。该项目旨在研究长期存在的和新引入的可积模型。具体来说,我们试图找到的初始状态下,可以构建全球的时间动力学的最小条件,调查(在)特殊结构(如孤子和多孤子)的稳定性,并阐明一般的解决方案的长期行为。该项目为研究生提供了重要的研究培训机会,他们被纳入了该项目的主要目标。该项目研究了新引入的连续Calogero-Moser方程的以下具体问题:(1)标度不变空间中的大数据适定性,(2)对于初始数据质量小于基态孤子的散焦模型和聚焦方程的散射,以及(3)在聚焦情况下爆破阈值的确定。进一步的目标包括Benjamin-Ono方程多孤子解在最优适定性空间中的轨道和渐近稳定性,该方程大解远离孤子分量的色散衰减,以及朗道-Lifshitz模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Visan其他文献
Asymptotic behavior of solutions to NLS with critical homogeneous nonlinearity
具有临界齐次非线性的 NLS 解的渐近行为
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki - 通讯作者:
Satoshi Masaki
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
- DOI:
10.1007/s00209-017-1934-8 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng - 通讯作者:
Jiqiang Zheng
Navier-Stokes-Korteweg方程式に対する時間大域解の一意存在性について
Navier-Stokes-Korteweg 方程时间全局解的唯一存在性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki;村田美帆 - 通讯作者:
村田美帆
質量劣臨界非線形シュレディンガー方程式の負の微分指数を持つソボレフ空間での解析
负微分指数Sobolev空间中质量亚临界非线性薛定谔方程分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan - 通讯作者:
Monica Visan
Asymptotic behavior of solutions to nonlinear Schrodinger equation with critical homogeneous nonlinearity
具有临界齐次非线性的非线性薛定谔方程解的渐近行为
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki - 通讯作者:
Satoshi Masaki
Monica Visan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Visan', 18)}}的其他基金
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Integrable and Non-Integrable Dispersive Partial Differential Equations
可积和不可积色散偏微分方程
- 批准号:
1763074 - 财政年份:2018
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Dispersive equations with broken symmetries
对称性破缺的色散方程
- 批准号:
1161396 - 财政年份:2012
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0901166 - 财政年份:2009
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0965029 - 财政年份:2009
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
- 批准号:
21K13826 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
- 批准号:
20K14350 - 财政年份:2020
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hamilton-Jacobi equations on metric measure spaces
度量测度空间上的 Hamilton-Jacobi 方程
- 批准号:
20K22315 - 财政年份:2020
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Well-posedness for higher order dispersive equations and their symmetric structure
高阶色散方程及其对称结构的适定性
- 批准号:
20J12750 - 财政年份:2020
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows