Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
基本信息
- 批准号:2348018
- 负责人:
- 金额:$ 38.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrable systems have long served as guides in the study of Hamiltonian partial differential equations. They arise as effective models of real physical systems, including in optics and many-body quantum mechanics. It is in the setting of completely integrable systems that solitons and multisolitons were first discovered. These structures have since found numerous applications in the applied sciences: for example, in fiber optics, solitons have been employed in the transmission of digital signals over long distances, while in biology, they are used to describe signal propagation in the nervous system and low-frequency collective motion in proteins. This project seeks to investigate both longstanding and newly introduced integrable models. Specifically, we seek to find the minimal conditions on the initial state under which one can construct global-in-time dynamics, investigate the (in)stability of special structures (such as solitons and multisolitons), and elucidate the long-time behavior of general solutions. The project provides significant research training opportunities for graduate students, who are integrated into the main objectives of the project. The project investigates the following specific questions for the newly introduced continuum Calogero-Moser equations: (1) large data well-posedness in the scaling-invariant space, (2) scattering for both the defocusing model and the focusing equation for initial data with mass less than that of the ground state soliton, and (3) the determination of the blowup threshold in the focusing case. Further objectives include orbital and asymptotic stability of multisoliton solutions to the Benjamin-Ono equation in optimal well-posedness spaces, dispersive decay away from the soliton component for large solutions to this equation, and the construction of Gibbs dynamics for the Landau-Lifshitz model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
长期以来,整合系统一直是对哈密顿局部差分方程的研究指南。它们是实际物理系统的有效模型,包括光学和多体量子力学。正是在完全可集成的系统的情况下,首先发现了孤子和多层。此后,这些结构在应用科学中发现了许多应用:例如,在光纤中,孤子已用于长距离传输数字信号,而在生物学中,它们被用来描述神经系统中的信号传播和蛋白质中低频集体运动。该项目旨在调查长期和新引入的集成模型。具体而言,我们试图在初始状态下找到最小的条件,在该状态下,人们可以构建时间全球动力学,研究特殊结构(例如孤子和多层)的(在)稳定性(在)稳定性上,并阐明一般解决方案的长期行为。该项目为研究生提供了重要的研究培训机会,这些研究生纳入了项目的主要目标。 The project investigates the following specific questions for the newly introduced continuum Calogero-Moser equations: (1) large data well-posedness in the scaling-invariant space, (2) scattering for both the defocusing model and the focusing equation for initial data with mass less than that of the ground state soliton, and (3) the determination of the blowup threshold in the focusing case.进一步的目标包括多层解决方案对本杰明·索尼(Benjamin-Ono)方程的轨道和渐近稳定性,在最佳的良好空间中方程,从孤子组件中脱落了该方程式的大型解决方案的分散性衰减,以及该方程式的构建,以及通过landau-lifshitz Models的构建gibbs的构建。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Visan其他文献
Asymptotic behavior of solutions to NLS with critical homogeneous nonlinearity
具有临界齐次非线性的 NLS 解的渐近行为
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki - 通讯作者:
Satoshi Masaki
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
适应具有平方反比势的薛定谔算子的索博列夫空间
- DOI:
10.1007/s00209-017-1934-8 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Changxing Miao;Monica Visan;Junyong Zhang;Jiqiang Zheng - 通讯作者:
Jiqiang Zheng
Navier-Stokes-Korteweg方程式に対する時間大域解の一意存在性について
Navier-Stokes-Korteweg 方程时间全局解的唯一存在性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki;村田美帆 - 通讯作者:
村田美帆
質量劣臨界非線形シュレディンガー方程式の負の微分指数を持つソボレフ空間での解析
负微分指数Sobolev空间中质量亚临界非线性薛定谔方程分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan - 通讯作者:
Monica Visan
Asymptotic behavior of solutions to nonlinear Schrodinger equation with critical homogeneous nonlinearity
具有临界齐次非线性的非线性薛定谔方程解的渐近行为
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rowan Killip;Satoshi Masaki;Jason Murphy;Monica Visan;Hirokazu Saito;Satoshi Masaki;Hirokazu Saito;Satoshi Masaki - 通讯作者:
Satoshi Masaki
Monica Visan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Visan', 18)}}的其他基金
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Integrable and Non-Integrable Dispersive Partial Differential Equations
可积和不可积色散偏微分方程
- 批准号:
1763074 - 财政年份:2018
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Dispersive equations with broken symmetries
对称性破缺的色散方程
- 批准号:
1161396 - 财政年份:2012
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0901166 - 财政年份:2009
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0965029 - 财政年份:2009
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
相似国自然基金
虚拟环境下基于肢体姿势交互的虚拟移动技术研究
- 批准号:62372212
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于OpenSIM姿势仿真生物力学的腰背部肌肉疲劳预警及干预研究
- 批准号:82373549
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
辅助运动区对基底节区脑梗死姿势控制网络的影响及其调控机制研究
- 批准号:82302844
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视觉运动整合网络参与帕金森病躯干姿势异常发病机制的研究
- 批准号:82201404
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
视觉运动整合网络参与帕金森病躯干姿势异常发病机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 38.87万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 38.87万 - 项目类别:
Standard Grant