Structure Constants for Bases of the Polynomial Ring

多项式环基的结构常数

基本信息

  • 批准号:
    1763336
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Schubert calculus began around 1879 with Herman Schubert asking, and in special cases answering, enumerative questions in geometry. For example, how many points in the plane meet two given lines simultaneously or how many lines in space meet four given lines? To answer the latter, Schubert considered the case where the first line intersects the second and the third intersects the fourth, in which case the answer is 2 (the line connecting the two points of intersection and the line of intersection of the two planes spanned by the two pairs of intersecting lines). He then asserted, by his principle of conservation of number, that the general answer, if finite, must also be 2. David Hilbert, in his 15th problem for the twentieth century, set out the task of making rigorous Schubert's principle of conservation of number. Cohomology resolved this and lead us to modern Schubert calculus and intersection theory, which has ramifications in geometry, topology, combinatorics, and even plays a central role in string theory. Yet today, Schubert's original question remains unanswered: how can one effectively compute intersection numbers for linear subspaces?Lascoux and Schutzenberger in 1985 defined polynomial representatives for the Schubert classes in the cohomology ring of the complete flag variety. These Schubert polynomials give explicit polynomial representations of the Schubert classes whose structure constants enumerate flags (sequences of nested linear subspaces) in a suitable triple intersection of Schubert varieties, which are precisely the nonnegative integers Schubert calculus aims to compute. The principal investigator will lift powerful tools and techniques from symmetric function theory to the full polynomial ring and apply them to Schubert polynomials with the ultimate goal of finding a combinatorial formula for these intersection numbers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
舒伯特微积分开始于1879年左右与赫尔曼舒伯特要求,并在特殊情况下回答,枚举问题的几何。例如,平面上有多少点同时与两条给定的直线相交,或者空间中有多少条直线与四条给定的直线相交?为了回答后者,舒伯特考虑了第一条线与第二条线相交,第三条线与第四条线相交的情况,在这种情况下,答案是2(连接两个交点的线和由两对相交线跨越的两个平面的相交线)。然后,他根据他的数守恒原理断言,如果是有限的,一般的答案也必定是2。大卫希尔伯特,在他的第15个问题,为二十世纪,提出了严格的舒伯特的原则,保持数量的任务。上同调解决了这个问题,并把我们带到了现代舒伯特微积分和交集理论,它在几何学、拓扑学、组合学中有分支,甚至在弦理论中发挥了核心作用。然而今天,舒伯特最初的问题仍然没有答案:如何有效地计算线性子空间的交集数?Lascoux和Schutzenberger在1985年定义了完备旗簇的上同调环中舒伯特类的多项式表示。这些舒伯特多项式给出了舒伯特类的显式多项式表示,舒伯特类的结构常数枚举了舒伯特簇的适当三重交集中的标志(嵌套线性子空间的序列),这些标志正是舒伯特演算旨在计算的非负整数。首席研究员将把强大的工具和技术从对称函数理论提升到完整的多项式环,并将其应用于舒伯特多项式,最终目标是找到这些交集数的组合公式。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Specht modules decompose as alternating sums of restrictions of Schur modules
Specht 模块分解为 Schur 模块的限制的交替总和
Affine Demazure crystals for specialized nonsymmetric Macdonald polynomials
用于特殊非对称麦克唐纳多项式的仿射 Demazure 晶体
  • DOI:
    10.5802/alco.178
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Assaf, Sami;Gonzalez, Nicolle
  • 通讯作者:
    Gonzalez, Nicolle
A Pieri rule for key polynomials
关键多项式的 Pieri 规则
Crystal graphs for shifted tableaux
移动画面的水晶图
Flagged (P,ρ) -partitions
标记 (P,Ï) - 分区
  • DOI:
    10.1016/j.ejc.2020.103085
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Assaf, Sami;Bergeron, Nantel
  • 通讯作者:
    Bergeron, Nantel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sami Assaf其他文献

Skew key polynomials and a generalized Littlewood–Richardson rule
斜键多项式与广义的利特尔伍德-理查森法则
  • DOI:
    10.1016/j.ejc.2022.103518
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Sami Assaf;Stephanie van Willigenburg
  • 通讯作者:
    Stephanie van Willigenburg

Sami Assaf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sami Assaf', 18)}}的其他基金

Schubert Structure Constants via Kohnert Combinatorics
通过 Kohnert 组合学计算舒伯特结构常数
  • 批准号:
    2246785
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Symmetric functions in Combinatorics and Representation Theory
组合学和表示论中的对称函数
  • 批准号:
    1265728
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703567
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship

相似海外基金

Schubert Structure Constants via Kohnert Combinatorics
通过 Kohnert 组合学计算舒伯特结构常数
  • 批准号:
    2246785
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Realization of a stand-alone power conversion system with a high-precision measurement mechanism and automatic adjustment of control constants
实现具有高精度测量机构和控制常数自动调整的独立电源转换系统
  • 批准号:
    23K03829
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Unified Theory of Electronic Transition Rate Constants for High Throughput Materials Screening
高通量材料筛选的电子跃迁速率常数统一理论
  • 批准号:
    22K05252
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating the development of novel clocks for measuring varying fundamental constants
加速开发用于测量不同基本常数的新型时钟
  • 批准号:
    ST/W006138/1
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Study of holonomic constants using algebraic analysis
使用代数分析研究完整常数
  • 批准号:
    22K18668
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Accelerating the development of novel clocks for measuring varying fundamental constants
加速开发用于测量不同基本常数的新型时钟
  • 批准号:
    ST/W006197/1
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
New iterative, tensor, and collocation methods for computing ro-vibrational spectra and inelastic rate constants
用于计算旋转振动谱和非弹性速率常数的新迭代、张量和配置方法
  • 批准号:
    RGPIN-2019-04357
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Henry's law, hydrolysis rate, and octanol-water partitioning constants of PAN and PPN
PAN 和 PPN 的亨利定律、水解速率和辛醇-水分配常数
  • 批准号:
    574784-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Deriving Optical Constants of Carbon and Mineral Phases
推导碳相和矿物相的光学常数
  • 批准号:
    575621-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
How constant are physical constants? Using the Solar System as a test bed for General Relativity.
物理常数有多恒定?
  • 批准号:
    559127-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了