CIF: Medium: Collaborative Research: Coded Computing for Large-Scale Machine Learning

CIF:媒介:协作研究:大规模机器学习的编码计算

基本信息

  • 批准号:
    1763561
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Deep learning models are breaking new ground in data science tasks including image recognition, automatic translation and autonomous driving. This is achieved by neural networks that can be hundreds of layers deep and involve hundreds of millions of parameters. Training such large models requires distributed computations, very long training times and expensive hardware. This project studies coding theoretic techniques that can accelerate distributed machine learning and allow training with cheaper commodity hardware. Beyond the development of theoretical foundations, this project develops new algorithms for providing fault tolerance over unreliable cloud infrastructure that can significantly reduce the cost of large-scale machine learning. The research outcomes of the project will be broadly disseminated and integrated into education. The specific focus of this research program is on mitigating the bottlenecks of distributed machine learning. Currently, scaling benefits are limited because of two reasons: first, communication is typically the bottleneck and second, straggler effects limit performance. Both problems can be mitigated using coding theoretic methods. This work proposes "coded computing", a transformative framework that combines coding theory with distributed computing to inject computational redundancy in a novel coded form. This framework is then used to develop three research thrusts: a) Coding for Linear Algebraic Computations b) Coding for Iterative Computations and c) Coding for General Distributed Computations. Each of the thrusts operates on a different layer of a machine learning pipeline but all rely on coding theoretic tools and distributed information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习模型正在数据科学任务中开辟新天地,包括图像识别、自动翻译和自动驾驶。这是通过神经网络来实现的,神经网络可以有数百层,涉及数亿个参数。训练如此大的模型需要分布式计算,非常长的训练时间和昂贵的硬件。该项目研究编码理论技术,可以加速分布式机器学习,并允许使用更便宜的商品硬件进行训练。除了开发理论基础之外,该项目还开发了新的算法,用于在不可靠的云基础设施上提供容错,从而大大降低大规模机器学习的成本。该项目的研究成果将广泛传播并纳入教育。该研究计划的具体重点是缓解分布式机器学习的瓶颈。目前,扩展的好处是有限的,因为两个原因:第一,通信通常是瓶颈,第二,掉队者影响限制性能。这两个问题都可以使用编码理论方法来缓解。这项工作提出了“编码计算”,一个变革性的框架,结合编码理论与分布式计算注入计算冗余在一个新的编码形式。这个框架,然后用来开发三个研究重点:a)线性代数计算的编码B)迭代计算的编码和c)一般分布式计算的编码。每个项目都在机器学习管道的不同层上运行,但都依赖于编码理论工具和分布式信息处理。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coded QR Decomposition for Solving System of Linear Equations
求解线性方程组的编码QR分解
Addressing Unreliability in Emerging Devices and Non-von Neumann Architectures Using Coded Computing
  • DOI:
    10.1109/jproc.2020.2986362
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Dutta, Sanghamitra;Jeong, Haewon;Grover, Pulkit
  • 通讯作者:
    Grover, Pulkit
Neural silences can be localized rapidly using noninvasive scalp EEG.
  • DOI:
    10.1038/s42003-021-01768-0
  • 发表时间:
    2021-03-30
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Chamanzar A;Behrmann M;Grover P
  • 通讯作者:
    Grover P
Masterless Coded Computing: A Fully-Distributed Coded FFT Algorithm
Masterless编码计算:一种全分布式编码FFT算法
  • DOI:
    10.1109/allerton.2018.8636047
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeong, Haewon;Low, Tze Meng;Grover, Pulkit
  • 通讯作者:
    Grover, Pulkit
Robust Molecular Dynamics Simulations Using Coded FFT Algorithm
使用编码 FFT 算法进行稳健的分子动力学模拟
  • DOI:
    10.1109/icassp.2019.8682276
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wong, Yuk;Zhang, Yuqiu;Jeong, Haewon;Grover, Pulkit
  • 通讯作者:
    Grover, Pulkit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pulkit Grover其他文献

Scaling of Algorithmic Bias in Pulse Oximetry with Signal-to-Noise Ratio
用信噪比缩放脉搏血氧饱和度中的算法偏差
EEG Source Imaging of Infarct Core and Penumbra for Ischemic Stroke Patients
缺血性中风患者梗塞核心和半暗带的脑电图源成像
Effect of electric field direction on neuronal activity: an ex-vivo study*
电场方向对神经元活动的影响:离体研究*
A vector version of witsenhausen’s counterexample: A convergence of control, communication and computation
维森豪森反例的矢量版本:控制、通信和计算的融合

Pulkit Grover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pulkit Grover', 18)}}的其他基金

WiFiUS: Fault-Tolerant Cognitive IoT Systems Using Sensors of Limited Field-of-View: Fundamental Limits and Practical Strategies
WiFiUS:使用有限视场传感器的容错认知物联网系统:基本限制和实际策略
  • 批准号:
    1702694
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Towards Green Communications Using an Information-Lens: Foundations of the Joint Design of Communication Strategies and Circuits
职业:使用信息镜头迈向绿色通信:通信策略和电路联合设计的基础
  • 批准号:
    1350314
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了