Southwest Center for Arithmetic Geometry Winter School
西南算术几何中心冬季学校
基本信息
- 批准号:1763675
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from this award, the Southwest Center for Arithmetic Geometry will continue its series of annual "Winter Schools" in 2019 taking place March 2-6, 2019 at the University of Arizona in Tucson, AZ. Since its founding in 1997, the primary activity of the Southwest Center is the Arizona Winter School (AWS), an annual meeting which has become a prominent national event and provides high-level training and research experience for graduate students in arithmetic geometry and related areas. The AWS is organized around a different central topic each year and features a set of courses and accompanying research projects carefully designed and delivered by leading and emerging experts. The result is a unique fusion of traditional mathematics conference and intensive research workshop: the speakers organize courses of four or five lectures, provide lecture notes in advance, and propose research projects for graduate students to work on during the meeting. Nightly working sessions on these projects and on separate problem sets are run by the speakers and postdoctoral fellows. On the last day, students present their findings to the participants of the meeting. The result is a particularly intense and focused five days of mathematical activity for everyone involved. At the AWS, connections among peers are formed, and mentoring relationships between students and senior researchers are developed. Subsequent collaborations between participants at all levels are the norm. Students make concrete strides toward becoming research mathematicians, post-doctoral assistants gain valuable mentoring experience in their academic careers, and faculty develop new interests and see new connections that lead to important published results. The Southwest Center website shares reusable content from the Winter Schools, including lecture notes, project descriptions, and audio and video of lectures (both live-streamed and permanently archived). Through these thorough records, the dialogues begun at the AWS are extended to the greater community, and the efforts of the AWS participants are made freely and indefinitely available to all. More information about the upcoming and past Arizona Winter School programs can be found at the Southwest Center's website: http://swc.math.arizona.edu/The 2019 AWS will be held on the topic of Topology and Arithmetic, exploring the boundary of higher homotopy theory and arithmetic geometry. The development and maturation of higher category/homotopy theory is one of the most significant achievements in topology in the last decade, and has recently found striking applications to number theory and arithmetic geometry. The earliest applications were to topological quantum field theories, cobordisms, and elliptic cohomology; even here, the interaction between generalized cohomology theories and formal groups yielded results of interest to arithmetic geometry (especially, the elucidation of the geometry of Lubin--Tate and Gross--Hopkins moduli spaces of formal groups). More recent progress abounds. Gaitsgory--Lurie study Tamagawa numbers (a fundamental invariant of algebraic groups over global fields) via topological techniques. Bhatt--Morrow--Scholze establish the existence of a weight filtration on topological Hochschild homology whose graded pieces are related both to classical cohomology theories (de Rham, crystalline) and to integral p-adic Hodge theory. Work of Wickelgren and others develop arithmetic aspects of A1-homotopy theory, extending some enumerative problems from the complex numbers to other fields. The 2019 Winter School will focus on exposition of applications and connections to arithmetic geometry, rather than the development of a general theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该奖项的支持下,西南算术几何中心将于2019年3月2日至6日在亚利桑那州图森市的亚利桑那大学继续举办一年一度的冬季学校系列活动。自1997年成立以来,西南中心的主要活动是亚利桑那州冬季学校(AWS),这是一个年度会议,已成为全国知名活动,为研究生提供算术几何及相关领域的高水平培训和研究经验。AWS每年围绕一个不同的中心主题组织,由领先的和新兴的专家精心设计和提供一系列课程和配套的研究项目。结果是传统数学会议和密集研究工作坊的独特融合:演讲者组织四到五个讲座的课程,提前提供讲座笔记,并提出研究项目供研究生在会议期间工作。每晚关于这些项目和单独的问题集的工作会议由演讲者和博士后研究员主持。在最后一天,学生们向会议的参与者展示他们的发现。结果是,每个参与者都将进行为期五天的特别紧张和专注的数学活动。在AWS,同行之间形成了联系,学生和高级研究人员之间建立了指导关系。各级参与者之间的后续协作是常态。学生们朝着成为研究数学家的方向迈出了具体的步伐,博士后助理在他们的学术生涯中获得了宝贵的指导经验,教师们培养了新的兴趣,看到了新的联系,导致了重要的出版成果。西南中心网站共享冬季学校的可重复使用的内容,包括课堂讲稿、项目描述和讲座的音频和视频(包括现场直播和永久存档)。通过这些透彻的记录,AWS开始的对话扩展到更大的社区,AWS参与者的努力自由和无限期地向所有人提供。关于即将和过去的亚利桑那州冬季学校项目的更多信息可以在西南中心的网站上找到:http://swc.math.arizona.edu/The 2019年冬季学校将以拓扑和算术为主题,探索高等同伦理论和算术几何的边界。高阶范畴/同伦理论的发展和成熟是近十年来拓扑学中最重要的成就之一,最近在数论和算术几何中得到了显著的应用。最早的应用是拓扑量子场论、上同调和椭圆上同调;即使在这里,广义上同调理论和形式群之间的相互作用也产生了算术几何感兴趣的结果(特别是对形式群的Lubin-Tate和Gross-Hopkins模空间的几何的阐明)。更新的进展比比皆是。Gaitsgory-Lurie通过拓扑技术研究Tamagawa数(全局域上代数群的基本不变量)。Bhatt-Morrow-Scholze在拓扑Hochschild同调上建立了一个权滤子的存在性,它的分次块既与经典上同调理论(de Rham,晶体)有关,也与积分p-进Hodge理论有关。Wickelgren等人的工作发展了A1-同伦理论的算术方面,将一些计数问题从复数推广到其他领域。2019年冬季学校将专注于阐述算术几何的应用和联系,而不是发展一般理论。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryden Cais其他文献
The geometry of Hida families I: $$\Lambda $$ -adic de Rham cohomology
- DOI:
10.1007/s00208-017-1608-1 - 发表时间:
2017-12-26 - 期刊:
- 影响因子:1.400
- 作者:
Bryden Cais - 通讯作者:
Bryden Cais
Dieudonné crystals and Wach modules for p ‐divisible groups
p 可整群的 Dieudonné 晶体和 Wach 模块
- DOI:
10.1112/plms.12021 - 发表时间:
2014 - 期刊:
- 影响因子:1.8
- 作者:
Bryden Cais;E. Lau - 通讯作者:
E. Lau
Canonical integral structures on the de Rham cohomology of curves
曲线 de Rham 上同调的规范积分结构
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Bryden Cais - 通讯作者:
Bryden Cais
Correspondences, integral structures, and compatibilities in p -adic cohomology.
p 进上同调中的对应、积分结构和兼容性。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Bryden Cais - 通讯作者:
Bryden Cais
Modular curves and Ramanujan's continued fraction
模曲线和拉马努金连分数
- DOI:
10.1515/crelle.2006.063 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Bryden Cais;B. Conrad - 通讯作者:
B. Conrad
Bryden Cais的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryden Cais', 18)}}的其他基金
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Motivic Class Groups and Iwasawa Theory of Function Fields
动机类群和岩泽函数域理论
- 批准号:
1902005 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Arizona Winter School in Arithmetic Geometry
亚利桑那州算术几何冬季学校
- 批准号:
1903892 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Arizona Winter School in Arithmetic Geometry
亚利桑那州算术几何冬季学校
- 批准号:
1504537 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
- 批准号:
1360583 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
金刚石NV center与磁子晶体强耦合的混合量子系统研究
- 批准号:12375018
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
金刚石SiV center与声子晶体强耦合的新型量子体系研究
- 批准号:92065105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
金刚石NV center与磁介质超晶格表面声子极化激元强耦合的新型量子器件研究
- 批准号:11774285
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
室温下金刚石晶体内N-V center单电子自旋量子比特研究
- 批准号:10974251
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
- 批准号:
2310861 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
- 批准号:
2310937 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
- 批准号:
2349136 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Scripps Center for Oceans and Human Health: advancing the science of marine contaminants and seafood security
斯克里普斯海洋与人类健康中心:推进海洋污染物和海鲜安全的科学
- 批准号:
2414798 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
North Carolina Center for Coastal Algae, People, and Environment NC-CAPE
北卡罗来纳州沿海藻类、人类和环境中心 NC-CAPE
- 批准号:
2414792 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Great Lakes Center for Fresh Waters and Human Health
五大湖淡水和人类健康中心
- 批准号:
2418066 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
TEA Center Renewal: Sustaining Technological Excellence Pursuit in Advanced Manufacturing at Navajo Technical University (S.T.E.P)
TEA 中心更新:纳瓦霍技术大学 (S.T.E.P) 持续追求先进制造技术卓越
- 批准号:
2332354 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant














{{item.name}}会员




