RI: Medium: Collaborative Research: Developing a Uniform Meaning Representation for Natural Language Processing

RI:媒介:协作研究:为自然语言处理开发统一的含义表示

基本信息

  • 批准号:
    1764091
  • 负责人:
  • 金额:
    $ 39.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The use of intelligent agents that can communicate with us in human language has become an essential part of our daily lives. Today's intelligent agents can respond appropriately to many things we say or text to them, but they cannot yet communicate fully like humans. They lack our general ability to arrive quickly at accurate and relevant interpretations of what others communicate to us and to form appropriate responses, particularly in sustained interactions. The typical way we teach a machine to acquire such ability is to provide it with approximations of the meanings of utterances in the contexts in which they have occurred in the past. Over the years these approximations have become increasingly rich and detailed, enabling ever more sophisticated systems for interacting with computers using natural language, such as searching for information, getting up-to-date recommendations for products and services, and translating foreign languages. The goal of this project is to bring together linguists and computer scientists to jointly develop a practical meaning representation formalism based on these rich approximations that can be applied to a much more diverse set of languages. This will allow us to use machine learning to develop techniques to automatically translate human utterances into our meaning formalism. In turn, this will enable intelligent agents to acquire more advanced communication capabilities, and for a wider range of languages. The languages considered for the project include those spoken by large populations such as English, Chinese and Arabic, as well as native tongues of smaller groups such as Norwegian, and Arapaho and Kukama-Kukamira, two indigenous languages of the Americas. As such, this project will help bring modern technology to smaller groups so that all people can benefit equally from technological advancement. The project will also contribute to the development of the US workforce by training a new generation of researchers on cutting-edge technologies in artificial intelligence. This project brings together an interdisciplinary team of linguists and computer scientists from three institutions to jointly develop a Uniform Meaning Representation (UMR). UMR is a practical, formal, computationally tractable, and cross-linguistically valid meaning representation of natural language that can impact a wide range of downstream applications requiring deep natural language understanding (NLU). UMR will extend existing meaning representations to include quantifier types and relations, modality, negation, tense and aspect, and be tested on a typologically diverse set of languages. Methods and techniques for UMR annotation, parsing and generation, and evaluation will be uniform across languages. The project will also develop novel algorithms and models for UMR-based broad-coverage and general-purpose multilingual semantic parsers. Students participating in the project will receive training in the full cycle of conceptualizing, producing, processing, and consuming meaning representations at the sites of participating institutions. This project will help to build a community of NLP researchers that will contribute to the development of UMR-based data and tools and advance the state of the art in Natural Language Processing (NLP) in particular, and Artificial Intelligence (AI) in general.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用能够用人类语言与我们交流的智能代理已成为我们日常生活的重要组成部分。 今天的智能体可以对我们说的或发的短信做出适当的反应,但它们还不能像人类一样完全交流。它们缺乏我们的一般能力,无法对他人传达给我们的信息迅速做出准确和相关的解释,也无法形成适当的回应,特别是在持续的互动中。 我们教机器获得这种能力的典型方法是为它提供在过去发生的上下文中话语含义的近似值。 多年来,这些近似值变得越来越丰富和详细,使越来越复杂的系统能够使用自然语言与计算机进行交互,例如搜索信息、获取最新的产品和服务推荐以及翻译外语。 这个项目的目标是汇集语言学家和计算机科学家,共同开发一个实用的意义表示形式主义,基于这些丰富的近似,可以应用于更多样化的语言集。 这将使我们能够使用机器学习来开发技术,将人类的话语自动转换为我们的意义形式主义。反过来,这将使智能代理获得更先进的通信能力,并适用于更广泛的语言。 该项目考虑的语言包括大量人口使用的语言,如英语、汉语和阿拉伯语,以及较小群体的母语,如挪威语和美洲的两种土著语言阿拉帕霍语和库卡马-库卡米拉语。 因此,该项目将有助于将现代技术带给较小的群体,使所有人都能平等地从技术进步中受益。 该项目还将通过培训新一代人工智能尖端技术的研究人员,为美国劳动力的发展做出贡献。 该项目汇集了来自三个机构的语言学家和计算机科学家组成的跨学科团队,共同开发统一含义表示(UMR)。UMR是一种实用的、正式的、计算上易于处理的、跨语言有效的自然语言含义表示,可以影响需要深度自然语言理解(NLU)的广泛下游应用。 UMR将扩展现有的意义表示,包括量词类型和关系,模态,否定,时态和方面,并在类型学上不同的语言集进行测试。 UMR注释、解析和生成以及评估的方法和技术将在不同语言之间统一。 该项目还将为基于UMR的广泛覆盖和通用多语言语义解析器开发新的算法和模型。 参与该项目的学生将在参与机构的现场接受概念化、生产、处理和消费意义表征的全周期培训。 该项目将帮助建立一个NLP研究人员社区,为基于UMR的数据和工具的开发做出贡献,并推动自然语言处理(NLP)和人工智能(AI)的发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-lingual annotation: a road map for low- and no-resource languages
跨语言注释:低资源和无资源语言的路线图
Theoretical and Practical Issues in the Semantic Annotation of Four Indigenous Languages
Cross-linguistic semantic annotation: reconciling the language-specific and the universal
跨语言语义标注:协调特定语言与通用语言
A Dependency Structure Annotation for Modality
模态的依赖结构注释
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Croft其他文献

The Acid-Etched Fixed Prosthesis
  • DOI:
    10.14219/jada.archive.1982.0181
  • 发表时间:
    1982-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lawrence Yanover;William Croft;Franklin Pulver
  • 通讯作者:
    Franklin Pulver
Philosophical reflections on the future of construction grammar
对构式语法未来的哲学思考
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Croft
  • 通讯作者:
    William Croft
Typology and Universals
类型学和共性
  • DOI:
    10.2307/416749
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    A. Aristar;William Croft
  • 通讯作者:
    William Croft
Language universals without universal categories
没有普遍范畴的语言普遍性
  • DOI:
    10.1515/tl-2012-0002
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Croft;E. V. Lier
  • 通讯作者:
    E. V. Lier

William Croft的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Croft', 18)}}的其他基金

A Framework for Descriptive Grammars
描述语法框架
  • 批准号:
    9013095
  • 财政年份:
    1990
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了