RUI: Rigorous physical interpretation of vibrational probe frequencies in proteins

RUI:蛋白质振动探针频率的严格物理解释

基本信息

  • 批准号:
    1800080
  • 负责人:
  • 金额:
    $ 32.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Understanding the structures of proteins and how these structures change in response to their surroundings is a challenge of broad relevance to biology, biochemistry, biomedical science, and disease treatment. Chemists often use optical spectrometers (instruments that measure how molecules absorb, emit or scatter light)to obtain information about molecular structure. But as proteins are large molecules (hundreds or thousands of atoms) that are also flexible, it is very difficult to determine their structures from optical spectroscopy alone. In this project, supported by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor Casey Londergan of Haverford College is using a combination of experimental spectroscopy and computational chemistry to develop "vibrational probe" techniques for the determination of the structures and internal motions of proteins. A vibrational probe is a small molecule that vibrates at a known frequency (typically corresponding to infrared light) when it is isolated, but exhibits a change in frequency when it interacts with other molecules (including other probes). One such probe being investigated is thiocyanate, which contains sulfur, carbon and nitrogen (SCN). By attaching SCN or other vibrational probes to different parts of the protein, Prof. Londergan hypothesizes that the changes in probe frequencies can be associated with changes in their local probe environment. In principle, the vibrational probes thus report on local regions of the proteins and their interactions with other parts of the protein or with other molecules (water, dissolved ions, etc.). However, in order to interpret the experimentally observed probe frequency changes, computer simulations of the different protein shapes and local environments is necessary. This project is being conducted mainly by undergraduate students and is providing them with an interdisciplinary research experience with a network of local and international collaborators. This project also includes educational outreach activities, for example dance-based workshops and instructions designed to engender a more human-level understanding of proteins and their interactions. This research project is focusing on a model regulatory protein (calmodulin), a model membrane protein (alpha-synuclein), and other proteins at the center of bacterial biosynthesis. Well-sampled molecular dynamics (MD) simulations are employed to propose ensembles of structures, and then further simulations with vibrational probe groups explicitly included to produce simulated spectral lineshapes that can validate or help to re-weight the simulated structural ensembles. The initial model associations between measured spectra and local probe environments are being developed based on the relatively broadly-used SCN probe group. As the methodology improves in accuracy, it will ultimately be used to provide quantitative interpretation of new data from less-used probe groups that this project will develop (e.g.,azido, isonitrile, alkyne, and nitro groups). Some of these novel probe groups' signals are more easily collected by Raman spectroscopy rather than infrared absorption. This project's development of a quantitative vibrational probe methodology is likely to enable solutions to many important biomolecular problems where current data are underdetermined for representing the conformational distribution, which is of central importance in disordered and "fuzzy" protein systems(most of which are regulatory and/or disease-related species).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解蛋白质的结构以及这些结构如何响应其周围环境而变化是与生物学,生物化学,生物医学科学和疾病治疗广泛相关的挑战。化学家经常使用光谱仪(测量分子如何吸收,发射或散射光的仪器)来获得分子结构的信息。但由于蛋白质是大分子(数百或数千个原子),也是灵活的,很难单独从光谱学确定它们的结构。 在这个项目中,由化学系的化学结构动力学和机制(CSDM-A)计划的支持下,哈弗福德学院的凯西隆德根教授正在使用实验光谱学和计算化学的组合,开发“振动探针”技术,用于确定蛋白质的结构和内部运动。 振动探针是一种小分子,当它被隔离时以已知频率(通常对应于红外光)振动,但当它与其他分子(包括其他探针)相互作用时表现出频率变化。正在研究的一种这样的探针是硫氰酸盐,它含有硫,碳和氮(SCN)。通过将SCN或其他振动探针连接到蛋白质的不同部分,Londergan教授假设探针频率的变化可能与其局部探针环境的变化有关。 原则上,振动探针因此报告蛋白质的局部区域以及它们与蛋白质的其他部分或与其他分子(水、溶解的离子等)的相互作用。然而,为了解释实验观察到的探针频率变化,不同的蛋白质形状和局部环境的计算机模拟是必要的。该项目主要由本科生进行,并通过当地和国际合作者网络为他们提供跨学科的研究经验。该项目还包括教育推广活动,例如以舞蹈为基础的讲习班和指导,旨在使人们对蛋白质及其相互作用有更深入的了解。该研究项目的重点是模型调节蛋白(钙调蛋白),模型膜蛋白(α-突触核蛋白)和其他蛋白质在细菌生物合成的中心。 良好采样的分子动力学(MD)模拟提出的结构系综,然后进一步模拟与振动探针组明确包括产生模拟的光谱线型,可以验证或帮助重新加权模拟的结构系综。 测量的光谱和本地探针环境之间的初始模型关联正在开发的基础上,相对广泛使用的SCN探针组。随着该方法准确性的提高,它最终将用于对来自本项目将开发的较少使用的探针组的新数据进行定量解释(例如,叠氮基、异腈、炔和硝基)。这些新的探针组的信号中的一些更容易通过拉曼光谱而不是红外吸收来收集。 该项目开发的定量振动探针方法可能能够解决许多重要的生物分子问题,其中当前数据无法代表构象分布,这在无序和“模糊”蛋白质系统中至关重要(其中大多数是监管和/或疾病相关物种)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracking carrier protein motions with Raman spectroscopy
  • DOI:
    10.1038/s41467-019-10184-2
  • 发表时间:
    2019-05-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Epstein, Samuel C.;Huff, Adam R.;Charkoudian, Louise K.
  • 通讯作者:
    Charkoudian, Louise K.
Deuterium-Enhanced Raman Spectroscopy for Histidine pKa Determination in a pH-Responsive Hydrogel
  • DOI:
    10.1016/j.bpj.2020.09.011
  • 发表时间:
    2020-11-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Braun, Gabriel A.;Pogostin, Brett H.;Akerfeldt, Karin S.
  • 通讯作者:
    Akerfeldt, Karin S.
pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy
  • DOI:
    10.3390/molecules24030405
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pogostin, Brett H.;Malmendal, Anders;Akerfeldt, Karin S.
  • 通讯作者:
    Akerfeldt, Karin S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casey Londergan其他文献

Casey Londergan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Casey Londergan', 18)}}的其他基金

CAREER: Site-specific vibrational probes of membrane binding and protonation in proteins
职业:蛋白质中膜结合和质子化的位点特异性振动探针
  • 批准号:
    1150727
  • 财政年份:
    2012
  • 资助金额:
    $ 32.09万
  • 项目类别:
    Continuing Grant

相似海外基金

Rigorous Privacy Compliance in Modern Application Ecosystems
现代应用生态系统中严格的隐私合规性
  • 批准号:
    DP240103068
  • 财政年份:
    2024
  • 资助金额:
    $ 32.09万
  • 项目类别:
    Discovery Projects
Scaling MENTORS in CS (Matching Experienced and Novice Teachers for Ongoing Rigorous Support in Computer Science)
扩展计算机科学领域的导师(匹配经验丰富的教师和新手教师,为计算机科学领域提供持续的严格支持)
  • 批准号:
    2318232
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
    Standard Grant
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
  • 批准号:
    10679252
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
Rigorous Research Principles for Practicing Neuroscientists
神经科学家的严格研究原则
  • 批准号:
    10721722
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
RFA-CE-23-006 - Rigorous examination of anonymous reporting system data to prevent youth suicide and firearm violence: an applied natural language approach
RFA-CE-23-006 - 严格检查匿名报告系统数据以防止青少年自杀和枪支暴力:应用自然语言方法
  • 批准号:
    10786629
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
Elucidation of auditory machanism based on rigorous solution of the cochlear fluid mechanics model and its application to auditory medicine
基于耳蜗流体力学模型严密求解的听觉机制阐明及其在听觉医学中的应用
  • 批准号:
    23H03772
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rigorous Evaluation of Strategies to Prevent Overdose through Linking People with Illicit Substance Use Disorders to Recovery Support Services - 2022
通过将非法药物使用障碍患者与康复支持服务联系起来来预防用药过量的策略的严格评估 - 2022
  • 批准号:
    10817314
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
  • 批准号:
    10635323
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
Developing user-centric training in rigorous research: post-selection inference, publication bias, and critical evaluation of statistical claims.
在严谨的研究中开展以用户为中心的培训:选择后推断、发表偏见和统计声明的批判性评估。
  • 批准号:
    10721491
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 32.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了