FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮点误差分析
基本信息
- 批准号:2319507
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to enhance the reliability of numerical computations running on modern processing hardware by ensuring that the imprecision related errors due to finite machine representation sizes are within acceptable limits. In particular, this work targets arithmetic rounding caused by the floating-point number system. It is important to contain numerical error, given that critical scientific simulation data or important machine learning-related data are represented inside the computer memory. With the growing pressure to optimize on data movement in order to reduce energy consumption, many programs are switching to even lower precision numerical representations. This trend can introduce additional errors and hence one cannot really hope to eliminate all the error, but instead design algorithms that tolerate this error. This project develops a framework based on the versatile and popular LLVM language technologies within which multiple collaborating error analysis tools can be plugged in.The core technical approach taken in this work is the choice of LLVM as a common intermediate form for error analysis. While many academic research tools for such error analysis have been created, they cannot interoperate nor allow traditional programs to be subject to error analysis. The project proposes a framework called LLFPError that allows error analysis tools that target different error types to be integrated. This provides the designer with a comprehensive picture of numerical errors, including highlighting errors such as catastrophic cancellation, floating-point exceptions and floating-point rounding errors. The study and refinement of error analysis tools must be driven by realistic programming constructs but offered in a simplified form so as not to inundate the analysis tool. In this regard, the LLFPError will run program-slicing tools on realistic kernels that have been employed in the field. With this, LLFPError will not run the risk of analyzing examples that fall within a narrow scope. This also allows this project to harden existing error analysis tools as well as develop newer tools and release such tools along with our extended benchmark suite. This project, across two years, will result in the release of integrated error analysis tools as well as realistic examples. This helps meet one of the important needs in high performance computing (HPC) and machine learning (ML), namely versatile and comprehensive error analysis. Our eventual goal is to help grow the community of tool builders who target HPC and ML, thus paving the way for more reliable scientific simulations as well as reliable and explainable machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过确保有限机器表示尺寸引起的不精确相关误差在可接受的范围内,提高在现代处理硬件上运行的数值计算的可靠性。特别是,这项工作的目标是由浮点数系统引起的算术舍入。考虑到关键的科学模拟数据或重要的机器学习相关数据在计算机内存中表示,包含数值错误非常重要。随着优化数据移动以降低能耗的压力越来越大,许多程序正在转向更低精度的数值表示。这种趋势可能会引入额外的错误,因此不能真正希望消除所有错误,而是设计容忍这种错误的算法。该项目开发了一个框架的基础上,通用和流行的LLVM语言技术,其中多个协作的错误分析工具可以插入。在这项工作中采取的核心技术方法是选择LLVM作为一个共同的中间形式进行错误分析。虽然已经创建了许多用于此类错误分析的学术研究工具,但它们不能互操作,也不允许传统程序进行错误分析。该项目提出了一个名为LLFPError的框架,允许集成针对不同错误类型的错误分析工具。这为设计人员提供了一个全面的数字错误,包括突出显示错误,如灾难性取消,浮点异常和浮点舍入错误。错误分析工具的研究和改进必须由实际的编程结构驱动,但要以简化的形式提供,以免淹没分析工具。在这方面,LLFPError将在该领域已采用的真实内核上运行程序切片工具。这样,LLFPError就不会冒着分析属于狭窄范围内的示例的风险。 这也允许这个项目加强现有的错误分析工具,以及开发更新的工具,并与我们的扩展基准测试套件一起沿着发布这些工具。该项目历时两年,将发布集成错误分析工具以及现实示例。这有助于满足高性能计算(HPC)和机器学习(ML)的重要需求之一,即通用和全面的错误分析。我们的最终目标是帮助发展面向HPC和ML的工具构建者社区,从而为更可靠的科学模拟以及可靠和可解释的机器学习铺平道路。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh Gopalakrishnan其他文献
Binary Decision Diagrams as Minimal DFA
- DOI:
10.1201/9781315148175-20 - 发表时间:
2019-03 - 期刊:
- 影响因子:0
- 作者:
Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
FTTN: Feature-Targeted Testing for Numerical Properties of NVIDIA & AMD Matrix Accelerators
FTTN:针对 NVIDIA 数值特性的特征测试
- DOI:
10.48550/arxiv.2403.00232 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xinyi Li;Ang Li;Bo Fang;Katarzyna Swirydowicz;Ignacio Laguna;Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
Observations and modeling of symmetric instability in the ocean interior in the Northwestern Equatorial Pacific
- DOI:
https://doi.org/10.1038/s43247-022-00362-4 - 发表时间:
2022 - 期刊:
- 影响因子:7.9
- 作者:
Hui Zhou;William K. Dewar;Wenlong Yang;Hengchang Liu;Xu Chen;Rui Li;Chuanyu Liu;Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
Retroperitoneal lymphatics on CT and MR
- DOI:
10.1007/s00261-006-9036-9 - 发表时间:
2006-08-31 - 期刊:
- 影响因子:2.200
- 作者:
Shalini Govil;Asha Justus;Raghuram Lakshminarayanan;Sukria Nayak;Antony Devasia;Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
Observations and modeling of symmetric instability in the ocean interior in the Northwestern Equatorial Pacific
西北赤道太平洋海洋内部对称不稳定性的观测和模拟
- DOI:
10.1038/s43247-022-00362-4 - 发表时间:
2022-02 - 期刊:
- 影响因子:7.9
- 作者:
Hui Zhou;William K. Dewar;Wenlong Yang;Hengchang Liu;Xu Chen;Rui Li;Chuanyu Liu;Ganesh Gopalakrishnan - 通讯作者:
Ganesh Gopalakrishnan
Ganesh Gopalakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh Gopalakrishnan', 18)}}的其他基金
REU Site: Trust and Reproducibility of Intelligent Computation
REU 站点:智能计算的信任和可重复性
- 批准号:
2244492 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track-1: Correctness at Both Ends: Rigorous ML Meets Efficient Sparse Implementations
协作研究:FMitF:Track-1:两端的正确性:严格的 ML 满足高效的稀疏实现
- 批准号:
2124100 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Practical and Rigorous Correctness Checking and Correctness Preservation for Irregular Parallel Programs
合作研究:SHF:Medium:不规则并行程序的实用且严格的正确性检查和正确性保持
- 批准号:
1956106 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FMiTF: Track II: Rigorous and Versatile Float-Point Precision Analysis and Tuning
FMiTF:轨道 II:严格且多功能的浮点精度分析和调整
- 批准号:
1918497 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Small: Indy: Toward Safe and Fast Compiler Flags
SHF:小:Indy:迈向安全快速的编译器标志
- 批准号:
1817073 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Medium: Hierarchical Tuning of Floating-Point Computations
SHF:中:浮点计算的分层调整
- 批准号:
1704715 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
2017 Software Infrastructure for Sustained Innovation (SI2) Principal Investigator Workshop
2017持续创新软件基础设施(SI2)首席研究员研讨会
- 批准号:
1702722 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: Application-driven Data Precision Selection Methods
EAGER:应用驱动的数据精度选择方法
- 批准号:
1643056 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SI2-SSE: Scalable Multifaceted Graphical Processing Unit (GPU) Program Debugging
SI2-SSE:可扩展多方面图形处理单元 (GPU) 程序调试
- 批准号:
1535032 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
XPS: EXPL: CCA: Collaborative Research: Nixing Scale Bugs in HPC Applications
XPS:EXPL:CCA:协作研究:消除 HPC 应用程序中的规模错误
- 批准号:
1439002 - 财政年份:2014
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant