Decoupling Theory, Time-Frequency Analysis and Related Oscillatory Integrals
解耦理论、时频分析及相关振荡积分
基本信息
- 批准号:1800274
- 负责人:
- 金额:$ 10.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project involves work in the fields of harmonic analysis and analytic number theory. Analytic number theory is a branch of number theory which uses tools from mathematical analysis to solve problems about the integers. Harmonic analysis has its roots in the work of Fourier, who studied the way general functions may be represented by sums of simpler trigonometric functions. It has applications in various areas including mathematical physics, signal processing, and digital image processing. The project involves a series of problems in harmonic analysis related to Radon transforms and X-ray transforms. A deeper understanding of these transforms will produce a number of applications in areas such as computed tomography (CT) scan, sonar techniques, and radar techniques. On the other hand, the proposed project will stimulate interactions between harmonic analysis and analytic number theory. The principal investigator proposes to study a few famous open problems in analytic number theory, via tools recently developed in harmonic analysis. The project involves work in three directions, focusing separately on decoupling theory, time-frequency analysis, and certain oscillatory integrals that connect the previous two topics. One problem that is proposed in decoupling theory concerns Parsell-Vinogradov systems in all dimensions. The goal is to establish certain sharp decoupling inequalities that would imply sharp upper bounds on the number of integer solutions of these systems. Progress on this problem will allow a representation of every polynomial of a given degree by fewer linear forms. In the direction of time-frequency analysis, the principal investigator proposes to study an important special case of the famous Zygmund conjecture. This conjecture states that the maximal operator associated with a planar Lipschitz vector field is weakly bounded on the space of square-integrable functions. The principal investigator proposes to study the conjecture by further assuming the vector field to be constant along each vertical line on the plane. One problem that is proposed in the area of oscillatory integrals aims at proving sharp Sobolev regularity estimates for an averaging operator along the moment curve in every dimension. Sharp decoupling inequalities established by the principal investigator and collaborator will provide necessary tools from decoupling theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及调和分析和解析数理论领域的工作。解析数论是数论的一个分支,它利用数学分析中的工具来解决有关整数的问题。调和分析源于傅立叶的工作,他研究了一般函数可以用更简单的三角函数的和来表示的方式。它在数学物理、信号处理、数字图像处理等领域有着广泛的应用。该项目涉及与Radon变换和X射线变换相关的一系列调和分析问题。对这些变换的深入了解将在计算机断层扫描(CT)、声纳技术和雷达技术等领域产生许多应用。另一方面,拟议的项目将促进调和分析和解析数理论之间的互动。主要研究人员建议利用最近发展起来的调和分析工具来研究解析数论中的几个著名的公开问题。该项目涉及三个方向的工作,分别侧重于解耦理论、时频分析以及连接前两个主题的某些振荡积分。解耦理论中提出的一个问题涉及所有维度的Parsell-Vinogradov系统。我们的目标是建立某些尖锐的解耦不等式,这意味着这些系统的整数解的数量将有尖锐的上界。在这个问题上的进展将允许用更少的线性形式来表示给定次数的每个多项式。在时频分析的指导下,主要研究者建议研究著名的齐格蒙德猜想的一个重要特例。这一猜想表明与平面Lipschitz向量场相关的极大算子在平方可积函数空间上是弱有界的。首席研究人员建议进一步假设沿平面上每条垂直线的矢量场是恒定的,以研究这一猜想。在振荡积分领域提出的一个问题旨在证明平均算子在每一维的矩曲线上的精确的Soblev正则性估计。由首席研究员和合作者建立的尖锐的脱钩不平等将为脱钩理论提供必要的工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaoming Guo其他文献
Sharp decouplings for three dimensional manifolds in R 5
R 5 中三维流形的急剧解耦
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
C. Demeter;Shaoming Guo;Fangye Shi - 通讯作者:
Fangye Shi
A dichotomy for Hörmander-type oscillatory integral operators
- DOI:
10.1007/s00222-024-01288-8 - 发表时间:
2024-09-12 - 期刊:
- 影响因子:3.600
- 作者:
Shaoming Guo;Hong Wang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
Improved discrete restriction for the parabola
改进了抛物线的离散限制
- DOI:
10.4310/mrl.2023.v30.n5.a4 - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Shaoming Guo;Z. Li;Po - 通讯作者:
Po
Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems
与 Arkhipov-Chubarikov-Karatsuba 系统相关的力矩流形的解耦
- DOI:
10.1016/j.aim.2019.106889 - 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Shaoming Guo;Pavel Zorin - 通讯作者:
Pavel Zorin
Decoupling for certain quadratic surfaces of low co‐dimensions
某些低余维二次曲面的解耦
- DOI:
10.1112/jlms.12321 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shaoming Guo;Pavel Zorin - 通讯作者:
Pavel Zorin
Shaoming Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaoming Guo', 18)}}的其他基金
CAREER: Decoupling Theory, Oscillatory Integral Theory, and Their Applications in Analytic Number Theory and Combinatorics
职业:解耦理论、振荡积分理论及其在解析数论和组合学中的应用
- 批准号:
2044828 - 财政年份:2021
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Decoupling Theory, Time-Frequency Analysis and Related Oscillatory Integrals
解耦理论、时频分析及相关振荡积分
- 批准号:
1946107 - 财政年份:2019
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Investigation of the neural mechanisms of time perception and the theory-based manipulation of time perception.
研究时间感知的神经机制和基于理论的时间感知操纵。
- 批准号:
23KK0046 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Construction and systematization of unified control theory for discrete-time stochastic systems
离散时间随机系统统一控制理论的构建和系统化
- 批准号:
23H01433 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Game theory-based significance definition and protection of data in population time-series forecasting market
基于博弈论的人口时间序列预测市场数据的显着性定义和保护
- 批准号:
23KJ0616 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using Computational Time-Dependent Ginzburg-Landau Theory to calculate & visualise the current density of high-field superconductors in fusion tokamak
使用计算瞬态Ginzburg-Landau理论进行计算
- 批准号:
2910484 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Studentship
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
The theory of space-time varying metamaterials (Ref. 4659)
时空变化超材料理论 (参考文献 4659)
- 批准号:
2859646 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Studentship
Gravitational Wave Modeling Using Time-Domain Black Hole Perturbation Theory
使用时域黑洞微扰理论进行引力波建模
- 批准号:
2307236 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Virtue with Aristotle: Recovering an Ancient Ethical Theory for Our Time
亚里士多德的美德:为我们这个时代恢复古代伦理理论
- 批准号:
FT220100615 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
ARC Future Fellowships