CAREER: Decoupling Theory, Oscillatory Integral Theory, and Their Applications in Analytic Number Theory and Combinatorics
职业:解耦理论、振荡积分理论及其在解析数论和组合学中的应用
基本信息
- 批准号:2044828
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns research in harmonic analysis and analytic number theory. Harmonic analysis studies how general functions can be represented by sums of simpler functions, for instance, trigonometric functions. Analytic number theory is a branch of number theory that uses tools from mathematical analysis to answer questions concerning the integers. Recently, tools in harmonic analysis have proven to be very efficient in answering questions originating from analytic number theory. This project continues the investigation in the intersection of these two fields, in the hope of creating a dictionary between them that would allow researchers in one field to translate their tools to the other. The project also provides undergraduate students access to the forefront of current research. The PI plans to organize summer schools to attract more undergraduate and early graduate students to carry out interdisciplinary research in harmonic analysis and analytic number theory.The project involves work in decoupling theory, oscillatory integral theory, and their applications in analytic number theory and combinatorics. One goal in the development of decoupling theory is to obtain sharp decoupling inequalities for all polynomial surfaces that are translation-dilation invariant (TDI in short). This would imply sharp bounds on the number of integral solutions to all TDI systems of Diophantine equations. As a first step towards this goal, the PI will study two particularly important systems: TDI systems of monomials and TDI systems generated by one polynomial. In oscillatory integral theory, the PI also will study two problems. The first problem asks for the optimal Sobolev regularity estimates for an averaging operator along moment curves. The second problem asks for sharp Lebesgue estimates for maximal averaging operators along moment curves. It is expected that local smoothing estimates for linear wave equations and related decoupling inequalities will play key roles in the study of these two problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及调和分析和解析数论的研究。调和分析研究一般函数如何用简单函数的和来表示,例如三角函数。解析数论是数论的一个分支,它使用数学分析的工具来回答有关整数的问题。最近,谐波分析工具已被证明是非常有效的回答问题源于解析数论。该项目继续在这两个领域的交叉点进行调查,希望在它们之间创建一个字典,使一个领域的研究人员能够将他们的工具翻译到另一个领域。该项目还为本科生提供了进入当前研究前沿的机会。PI计划举办暑期学校,吸引更多本科生和研究生早期学生进行调和分析和解析数论的跨学科研究,项目涉及解耦理论,振荡积分理论及其在解析数论和组合学中的应用。解耦理论发展的一个目标是获得所有多项式曲面的精确解耦不等式,这些曲面是平移-伸缩不变的(简称TDI)。这意味着丢番图方程的所有TDI系统的积分解的数量上有严格的界限。作为实现这一目标的第一步,PI将研究两个特别重要的系统:单项式的TDI系统和由一个多项式生成的TDI系统。在振荡积分理论中,PI也将研究两个问题。第一个问题是求平均算子沿着矩曲线的最优Sobolev正则性估计。第二个问题要求尖锐的勒贝格估计最大平均算子沿着矩曲线。预计线性波动方程和相关解耦不等式的局部平滑估计将在这两个问题的研究中发挥关键作用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaoming Guo其他文献
Sharp decouplings for three dimensional manifolds in R 5
R 5 中三维流形的急剧解耦
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
C. Demeter;Shaoming Guo;Fangye Shi - 通讯作者:
Fangye Shi
A dichotomy for Hörmander-type oscillatory integral operators
- DOI:
10.1007/s00222-024-01288-8 - 发表时间:
2024-09-12 - 期刊:
- 影响因子:3.600
- 作者:
Shaoming Guo;Hong Wang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
Improved discrete restriction for the parabola
改进了抛物线的离散限制
- DOI:
10.4310/mrl.2023.v30.n5.a4 - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Shaoming Guo;Z. Li;Po - 通讯作者:
Po
Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems
与 Arkhipov-Chubarikov-Karatsuba 系统相关的力矩流形的解耦
- DOI:
10.1016/j.aim.2019.106889 - 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Shaoming Guo;Pavel Zorin - 通讯作者:
Pavel Zorin
Decoupling for certain quadratic surfaces of low co‐dimensions
某些低余维二次曲面的解耦
- DOI:
10.1112/jlms.12321 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shaoming Guo;Pavel Zorin - 通讯作者:
Pavel Zorin
Shaoming Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaoming Guo', 18)}}的其他基金
Decoupling Theory, Time-Frequency Analysis and Related Oscillatory Integrals
解耦理论、时频分析及相关振荡积分
- 批准号:
1946107 - 财政年份:2019
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Decoupling Theory, Time-Frequency Analysis and Related Oscillatory Integrals
解耦理论、时频分析及相关振荡积分
- 批准号:
1800274 - 财政年份:2018
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
偏微分方程与数论中的decoupling定理
- 批准号:11926303
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
耕地占用与GDP增长的Decoupling分析
- 批准号:70673097
- 批准年份:2006
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
- 批准号:
24K17761 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAS-MNP: Degradation of Plastics in the Environment: Decoupling the Roles of Polymer Type, Material Attributes, and Chemical Additives
CAS-MNP:环境中塑料的降解:解耦聚合物类型、材料属性和化学添加剂的作用
- 批准号:
2304991 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
A Study on the Effects of Decoupling and Economic Security on Global Activities of Firms
脱钩和经济安全对企业全球活动的影响研究
- 批准号:
23H00817 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterization of dynamic heterogeneity in polymer ultrathin film systems and investigation of the origin of the decoupling in dynamics
聚合物超薄膜系统动态异质性的表征及动力学解耦起源的研究
- 批准号:
23K04853 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decoupling Hydrogel Stiffness and Diffusivity for Hematopoietic Stem Cell Culture and Differentiation
用于造血干细胞培养和分化的水凝胶刚度和扩散率的解耦
- 批准号:
10647478 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
CAREER: The Exocompiler: Decoupling Algorithms from the Organization of Computation and Data
职业:Exocompiler:将算法与计算和数据的组织解耦
- 批准号:
2328543 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
- 批准号:
2409803 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
- 批准号:
2311174 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
ASCENT: Ultra-Compact PV Microinverters with Integrated Active Power Decoupling
ASCENT:具有集成有源功率去耦功能的超紧凑型光伏微型逆变器
- 批准号:
2328221 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
What triggers RV Fiber Re-Orientation in response to RV pressure overload, and what is its Consequence on Inter-Ventricular Decoupling?
是什么触发了右心室纤维重新定向以响应右心室压力过载,以及它对心室间解耦的影响是什么?
- 批准号:
10587587 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别: