I-Corps: Intelligent Traffic Management System

I-Corps:智能交通管理系统

基本信息

  • 批准号:
    1800452
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project will be significant reductions in traffic congestion, vehicle crash risk, and fuel consumption. This will potentially have large economic benefits as traffic congestion causes significant costs to the economy. It is anticipated that intelligent traffic incident management system will be used by state departments of transportation (DOTs) to reduce the duration and impacts of incidents and improve the safety of motorists, crash victims, and emergency responders. Additional benefits to the DOTs will be: reduced personnel training needs, improved workload conditions, and increased worker retention rates. State, municipal and city agencies managing traffic will use this solution as a smart and reliable decision-assist system to monitor traffic conditions in real time, proactively control risk using advisory control, quickly detect traffic incidents, identify the location and potential cause of incidents, suggest traffic control alternatives, and minimize cognitive bottlenecks for traffic incident management operators.This I-Corps project is focused on understanding the product-market fit for intelligent traffic management systems. The proposed system uses novel machine learning techniques and graph-based trend filtering approaches for anomaly detection and state estimation for massive, spatially correlated, multi-dimensional time series data obtained from sensors that monitor the traffic networks. These approaches have been shown to be superior to the state-of-the-art approaches for detecting faulty sensors and quickly reporting traffic incidents. An advanced human-machine interface will also be provided for the Intelligent Traffic Management system with the aim to reduce the Visual, Auditory, Cognitive and Psychomotor (VACP) workload of the Traffic Incident Managers. The system data architecture uses state-of-the-art data pipelines for data ingestion, massively parallel methods for stream and batch analytics, distributed databases for scalable data storage, and GPU-augmented methods for fast data visualization of large volumes of data.
这个I-Corps项目的更广泛的影响/商业潜力将大大减少交通拥堵,车辆碰撞风险和燃料消耗。这将潜在地产生巨大的经济效益,因为交通拥堵会给经济带来巨大的成本。预计州交通运输部(DOT)将使用智能交通事故管理系统,以减少事故的持续时间和影响,并提高驾驶员、事故受害者和应急人员的安全。DOT的其他好处将是:减少人员培训需求,改善工作量条件,提高工人保留率。 管理交通的州、市和城市机构将使用该解决方案作为智能可靠的决策辅助系统,以真实的时间监控交通状况,使用咨询控制主动控制风险,快速检测交通事故,确定事故的位置和潜在原因,建议交通控制替代方案,最大限度地减少交通事故管理操作员的认知瓶颈。这个I-Corps项目的重点是了解智能交通管理系统的产品市场适合度。该系统使用新的机器学习技术和基于图形的趋势过滤方法,用于从监控交通网络的传感器获得的大量空间相关多维时间序列数据的异常检测和状态估计。这些方法已被证明是上级的最先进的方法,用于检测故障传感器和快速报告交通事故。智能交通管理系统亦会提供先进的人机界面,以减轻交通事故管理人员在视觉、听觉、认知及心理方面的工作量。系统数据架构使用最先进的数据管道进行数据摄取,使用大规模并行方法进行流和批处理分析,使用分布式数据库进行可扩展的数据存储,使用GPU增强方法对大量数据进行快速数据可视化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Sharma其他文献

Reliability of Probe Speed Data for Detecting Congestion Trends
用于检测拥塞趋势的探测速度数据的可靠性
Limitations of Simultaneous Gap-Out Logic
同时跳空逻辑的局限性
  • DOI:
    10.1177/0361198106197800107
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Sharma;D. Bullock;S. Peeta
  • 通讯作者:
    S. Peeta
Survey of Data Classification & Prediction Techniques
Effect of Non Surgical Periodontal Therapy on Gingival Crevicular Fluid and Serum Visfatin Concentration in Periodontal Health and Disease
非手术牙周治疗对牙周健康和疾病中龈沟液和血清 Visfatin 浓度的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Raghavendra;A. Pradeep;R. Kathariya;Anuj Sharma;N. S. Rao;S. Naik
  • 通讯作者:
    S. Naik
Oral Health Status in Patients with Fixed Orthodontic Appliance with Molar Bands and Bonded Tubes
使用磨牙带和粘合管固定正畸矫治器患者的口腔健康状况
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Shrestha;Anuj Sharma;B. Lamichhane
  • 通讯作者:
    B. Lamichhane

Anuj Sharma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Sharma', 18)}}的其他基金

PFI:BIC- A Smart Service System for Traffic Incident Management Enabled by Large-data Innovations (TIMELI)
PFI:BIC-大数据创新支持的交通事故管理智能服务系统(TIMELI)
  • 批准号:
    1632116
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Network cyberinfrastructure innovation with an intelligent real-time traffic analysis framework and application-aware networking
CC* Integration-Small:网络基础设施创新,具有智能实时流量分析框架和应用感知网络
  • 批准号:
    2322369
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Adaptive Decentralized Traffic Forecasting for Intelligent Transportation
智能交通的自适应分散交通预测
  • 批准号:
    RGPIN-2019-05881
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Holistic Traffic Monitoring Platform with Intelligent Predictive Insights to Improve Traffic Management and Reduce Congestion – "Smart Lenz"
开发具有智能预测洞察力的整体交通监控平台,以改善交通管理并减少拥堵 —“Smart Lenz”
  • 批准号:
    10016527
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Collaborative R&D
Development of AI intelligent traffic monitoring system using self-powered censors
使用自供电传感器开发AI智能交通监控系统
  • 批准号:
    22K04371
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive Decentralized Traffic Forecasting for Intelligent Transportation
智能交通的自适应分散交通预测
  • 批准号:
    RGPIN-2019-05881
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent traffic monitoring using video data mining
使用视频数据挖掘的智能交通监控
  • 批准号:
    566707-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Intelligent real-time traffic analysis from live video streams
实时视频流的智能实时流量分析
  • 批准号:
    561391-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了